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Although plant stem cross-sections are most often
circular, some are square, triangular or elliptic, but
these are rare. The advantage of quadratic stems
over cylindrical ones, if one exists, is unclear. Here
we propose a (bio) mechanical advantage of square-
stemmed plants. Our idea is based on the fact that the
second moment of inertia I of a stem, depending on
the shape of the cross-section, determines the plant’s
resistance to bending and torsion deformations
induced by wind load and gravitation: a larger I
results in greater mechanical resistance. When can a
quadratic stem have a larger I than a cylindrical stem
of comparable material? We calculated the rotation-
invariant I of quadratic and cylindrical hollow stems
with the same cross-section area as functions of the
quotient k of the inner and outer dimensions, and
the quotient Q of the outer dimensions of square and
circlular stems. We determined those configurations
of the geometric control parameters k and Q for
which the I of a quadratic stem is larger than that
of a cylindrical one; that is, the former stem is more
resistant to mechanical deformations than the latter.
This finding provides a clear mechanical benefit of
square-stemmed over circle-stemmed plants.

1. Introduction
Plant stems connect above- and under-ground leaves
and roots, and have several important functions,
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including mechanical support, material transport and storage, for example. Their anatomical
variability ensures the diversity and success of plants in various ecosystems [1].

The stem of the majority of plants is cylindrical with a circular cross-section. Table 2
in appendix A lists 10 well-known circle-stemmed plant species. The dominance of circular
cross-sections suggests that this rotation-invariant stem shape may have certain advantages
compared to other cross-section shapes. The stem has to endure, without fracture, the bend-
ing and torsion deformations induced by wind load and gravitation. The greater the second
moment of inertia I of the stem’s cross-section, the more it resists against both forms of
deformation. This is well known in mechanics [2–5]. As a first approximation, we could think
that if the direction of wind hitting a plant of near rotation-symmetric shape is random, then
owing to the nearly rotation-invariant strains, the most mechanically advantageous stem shape
is cylindrical, because the I of a circular cross-section is clearly independent of the orientation of
the stem’s axis crossing the circle’s centre.

However, several plant species have square (figures 1 and 2), triangular or elliptic stem
cross-section [6–15]. Table 2 in appendix A lists the Latin and English names of 84 flower
species with a square stem. Although square-stemmed plants are much rarer than circular-
stemmed variaties, the former are more prevalent than plants with triangular or elliptic
stems. Here we mention only five species with triangular stem [16]: Vaccinium myrtillus
(bilberry), Allium ursinum (ramsons), Leucojum aestivum (summer snowflake), Carex riparia
(greater pond-sedge) and Sagittaria sagittifolia (arrowhead). Flowers with elliptic stems are,
for instance, Cystopteris fragilis (brittle bladder-fern), Potamogeton crispus (curled pondweed),
Asplenium marinum (sea spleenwort), Clematis vitalba (traveller’s joy), Clematis flammula (virgin’s
bower) [17]. Many species of square-stemmed plants are frequently observable in parks,
gardens and meadows.

The evolutionary advantage of plant stems with square, triangle or elliptic cross-sections
over cylindrical stems is not yet clarified. According to Shima et al. [18], the reason why
certain plants have a polygonal cross-section, rather than a circular, could be that this may aid
phyllotaxis formation, helping to identify the site of leaf formation. Furthermore, a polygonal
shape might provide improved cross-sectional mechanical performance. Inspired by the square
bamboo (Chimonobambusa quadrangularis), Shima et al. [18] proposed a mathematical descrip-
tion of the rounded squares observed in the cross-section of this bamboo species, possessing
rounded sides and filleted corners.

The aim of this work is to reveal a possible mechanical advantage of quadratic plant stems.
Here, we compare the moments of inertia Isquare and Icircle of hollow quadratic and cylindrical
stems having the same cross-section area F, as functions of the quotient k of the inner and
outer dimensions, and the quotient Q of the outer dimensions of the square and circle stems.
We determine those configurations of the geometric control parameters k and Q for which the
I of a quadratic stem is larger than that of a cylindrical one [19]. We show that the former
stem is more resistant to mechanical deformations than the latter, which marks an evolutionary
advantage for square-stemmed plants.

2. Calculation methods
For the purpose of easier traceability of our comprehensive calculations presented here, table
1 lists a summary of the parameters, symbols, mathematical expressions, conditions and limits
used in this section as well as in appendices B–D. Our goal is to determine the second moment
of inertia I of quadratic and cylindrical hollow plant stems of equal cross-section area. A larger
value of I ensures greater resistance of the stem to bending and torsion deformations induced
by wind load and gravitation.
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(a) (b)

(c) (d)

Figure 1. Four examples for flowers with stems of square cross-section: (a) Jerusalem sage, Phlomis russeliana,
(b) Argentinian vervain, Verbena bonariensis, (c) catmint, Nepeta×faassenii, (d) balkan clary, Salvia nemorosa (photos
taken by Gábor Horváth).

(a) (b)

Figure 2. Flowers, stems, leaves (a) and the square cross-section of the cup plant, Silphium perfoliatum (b) (photos taken by
Gábor Horváth).
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(a) Moment of inertia of a square rotated by angle α
Consider a square of side length asquare, one of the sides of which closes an angle α with
the neutral axis NN coinciding with axis x crossing the square’s geometrical centre O, shown
in figure 3a. And let us determine the moment of inertia Isquare of this square for NN. The
moments of inertia Iu and Iv of this square for the orthogonal axes v and u shown in figure 3a
closing an angle α with axes y and x are

(2.1)Iu = Iv = asquare
4

12 .

Using equation (2.1) and equation (C 3) in appendix C, we obtain

Table 1. Definition of parameters, symbols, expressions, conditions and limits determining the second moment of inertia I of
quadratic and cylindrical hollow plant stems with the same area F of their square and circular cross-sections.

parameters symbols and expressions

inner side length of a square collar ainner,square

outer side length of a square collar aouter,square ≡ asquare

quotient of the inner and outer side lengths of a
square collar

ksquare =
ainner,squareaouter,square

=
ainner,squareasquare

inner diameter of a circular collar (annulus) ainner,circle

outer diameter of a circular collar (annulus) aouter,circle ≡ acircle

quotient of the inner and outer diameters of a
circular collar (annulus)

kcircle =
ainner,circleaouter,circle

=
ainner,circleacircle

quotient of the outer side length of a square stem
and the outer diameter of a circle stem

Q =
aouter,squareaouter,circle

=
asquareacircle

area of a square collar Fsquare asquare, ksquare = asquare
2 1 − ksquare

2

area of a circle collar Fcircle acircle, kcircle =
πacircle

2 1 − kcircle
2

4

conditions limits of Q

from condition J(kcircle, Q) ≥ 0 follows Q ≥ g(kcircle) =
π 1 − ksquare

2

8

from condition 1 − π(1 − kcircle
2 )/4Q2 ≥ 0 it follows Q ≥ q(kcircle) =

π 1 − ksquare
2

4

from condition J(ksquare, Q) ≥ 0 follows Q ≥ f(ksquare) = π
2 1 − ksquare

2

from condition 1 − 4Q2(1 − ksquare
2 )/π ≥ 0 it follows

Q ≤ π
4 1 − ksquare

2 = ℎ(ksquare) =
f(ksquare)

2

moment of inertia symbols and expressions

moment of inertia of a square collar Isquare asquare, ksquare =
asquare

4 1 − ksquare
4

12

moment of inertia of a circle collar Icircle acircle, kcircle =
πacircle

4 1 − kcircle
4

64

quotient of the moments of inertia of square and
circle collars

J =
IsquareIcircle

4
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(2.2)Iu + Iv = asquare
4

6 = Ix + Iy,

(2.3)Ixcos2α + Iysin2α − sin2αA xydA = asquare
4

12 .

From equations (2.2) and (2.3), we get

(2.4)Ix = Isquare asquare,α = asquare
4

12 +
sin2α∬A xydxdy

cos2α − sin2α = asquare
4

12 ,

because according to figure 3b and owing to the fourfold symmetry of the square,

(2.5)Ixy = A xydxdy = 0 .

The explanation of this is as follows: in figure 3b, the uniform-shaped yellow and orange, as
well as bright and dark green tetragons are each other’s 90o rotations around the origin O. The
product +x·+y = xy of the coordinates of point A(+x,+y) is exactly the opposite of the coordinate
product −x·+y = xy of point B(−x,+y). The same is true for the coordinate products −x·−y = xy and
+x·−y = −xy of points C(−x, −y) and D(+x, −y), respectively. Therefore, and owing to the fourfold
symmetric form identity of these tetragons, calculating the integral of equation (2.5) for the
whole square area, each pair of opposite-signed coordinate products of point pairs A and B, as
well as C and D eliminate each other, resulting in the disappearance of the integral in equation
(2.5).

Hence, on the basis of equation (2.4), a square with side length asquare has a constant
moment of inertia Isquare = a4

square/12, independently of the orientation α of the axis crossing
the square centre O.

(b) Moments of inertia of square and circlular collars
The cross-sections of plant stems studied in this work have either a square- (figure 4a) or a
circlular- (figure 4b) collar shape, or in special cases a full (i.e. filled) square or circlular shape.
Let the outer and inner side lengths of the square collar be aouter,square ≡ asquare and ainner,square
= ksquareaouter,square = ksquareasquare (0 ≤ ksquare = ainner,square/aouter,square < 1), respectively.
Using equation (2.4), the moment of inertia Isquare(asquare, ksquare) of this square collar is the
difference of the moments of inertia Isquare(asquare) and Isquare(ksquareasquare) of the outer and
inner squares shown in figure 4a:

(2.6)Isquare asquare,ksquare =
asquare

4 1 − ksquare
4

12 , 0 ≤ k square < 1.

The moment of inertia Icircle(acircle) of a circle with diameter acircle is [2,4]

(2.7)Icircle acircle = πacircle
4

64 .

Let the outer and inner diameters of the circular collar in figure 4b be acircle and kcircleacircle (0
≤ kcircle < 1), respectively. Using equation (2.7), the moment of inertia Icircle(acircle, kcircle) of this
circlular collar is the difference of the moments of inertia Icircle(acircle) and Icircle(kcircleacircle) of
the outer and inner circles:

(2.8)Icircle acircle,kcircle =
πacircle

4 1 − kcircle
4

64 , 0 ≤ kcircle < 1.
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(c) Calculation of moments of inertia of square and circlular collars with the same area
Consider a cylindrical and a quadratic plant stem of equal length composed from the same
amount of plant material, that is, having the same area F of their circlular- and square-collar
cross-sections:

(2.9)Fcircle(acircle, kcircle) = Fsquare(asquare, ksquare), 0 ≤ kcircle < 1, 0 ≤ ksquare < 1.

The areas of these collars are as follows:

(2.10)Fcircle acircle, kcircle = Πacircle2 (1 − kcircle2 )
4 , Fsquare asquare, ksquare = asquare

2 1 − ksquare
2 .

From equations (2.9) and (2.10), we obtain

y y

u

(–x, +y)

(+x, +y)

(+x, –y)

(–x, –y)

O

a

a
N

B

D

C

O x

A

aN
x

v

asquare

asquare

asquare
asquare

asquare

asquare

asquareasquare

(a) (b)

Figure 3. (a) Calculation of the moment of inertia Isquare of a square (grey) for the neutral axis NN coinciding with axis x,
when the side length asquare is rotated by angle α from axes x and y around the origin O. (b) For justification of the zero value
of integral Ixy = A xydxdy = 0 occurring in the calculation of Isquare.

asquare
asquare

acircle/2

kcircleacircle/2

ksquare

a a
N N

O

(a) (b)y y

x
N N

O x

Figure 4. (a) A square collar, the outer side length asquare of which is rotated by angle α around the geometrical centre O,
and its inner side length is ksquareasquare with 0 ≤ ksquare < 1. (b) A circle collar, the outer diameter of which is acircle and the
inner diameter is kcircleacircle with 0 ≤ kcircle < 1. For both collars, the neutral axis NN coincides with axis x crossing O.

6

royalsocietypublishing.org/journal/rspa Proc. R. Soc. A 481: 20240445
 D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//r
oy

al
so

ci
et

yp
ub

lis
hi

ng
.o

rg
/ o

n 
15

 J
an

ua
ry

 2
02

5 



ksquare(kcircle, Q) = 1 − π(1 − kcircle
2 )

4Q2 , Q = asquareacircle
,

(2.11)ksquare kcircle = 1,Q = 1, ksquare kcircle = 0,Q = 1 − π
4Q2 .

Using equations (2.6), (2.8) and (2.11), we get

(2.12)Isquare = Q4acircle
4

12 1 − 1 −
π 1 − kcircle

2

4Q2

2

, Q = asquareacircle
.

Dividing equation (2.12) by equation (2.8), we obtain the quotient J of the moments of inertia
Isquare and Icircle of the cross-section of quadratic and cylindrical plant stems:

(2.13)J(kcircle, Q) = IsquareIcircle
= 16Q4

3π 1 − kcircle
4 1 − 1 −

π 1 − kcircle
4

4Q2

2

, 0 ≤ kcircle < 1,Q = asquareacircle
.

From the criterion J(kcircle, Q) = Isquare/Icircle ≥ 0, it follows that

(2.14)Q ≥ π 1 − kcircle
2

8 = g kcircle , gmin = g(kcircle=1) = 0, gmax = g(kcircle=0) = π
8 ≈ 0.6267,

which means that the lower limit of Q = asquare/acircle is the function g(kcircle) decribed by
[14]. From the condition that the argument under the square root in equation (2.11) describing
ksquare(kcircle, Q) cannot be negative, that is, from the criterion 1 − π 1−kcircle

2 /4Q2 ≥ 0, we obtain
the following limit:

Q ≥ π 1 − kcircle
2

4 = q kcircle ,

(2.15)qmin = q(kcircle = 1) = 0, qmax = q(kcircle = 0) = 0 = π
4 ≈ 0.8862.

Since q(kcircle) = π 1 − kcircle
2 /4 > g(kcircle) = π 1 − kcircle

2 /8, the condition Q ≥ q(kcircle) is the
stronger lower limit which determines the possible Q values. In the case of Fcircle = Fsquare
= F, from equation (2.10), we get

acircle kcircle, F = 4
π ⋅ F

1 − kcircle
2 , acircle,min kcircle = 0, F = 4

\pi ⋅ F,

(2.16)asquare ksquare, F = F
1 − ksquare

2 , asquare,min ksquare = 0, F = F .

Using equations (2.6), (2.8) and (2.11), we get

(2.17)J ksquare,Q = IsquareIcircle
=

4πQ2 1 + ksquare
2

6π − 12Q2 1 − ksquare
2 , 0 ≤ ksquare < 1, Q = asquareacircle

.

From the condition J(ksquare, Q) = Isquare/Icircle ≥ 0, it follows that

Q ≤ π
2 1 − ksquare

2 = f ksquare ,

(2.18)fmin = f ksquare = 0 = π
2 ≈ 1.2533, fmax = f ksquare = 1 = ∞,

which means that one of the upper limits of Q = asquare/acircle is the function f(ksquare) decribed
by equation (2.18). On the other hand, from equation (2.11) we obtain
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kcircle(ksquare,Q) = 1 − 4Q2(1 − ksquare2 )
π , Q = asquareacircle

,

(2.19)kcircle(ksquare = 1,Q) = 1, kcircle(ksquare = 0,Q) = 1 − 4Q2

π .

From the condition that the argument under the square root in equation (2.19) describing
kcircle(ksquare, Q) cannot be negative, that is, from the criterion 1 − 4Q2(1 − ksquare2 )/π ≥ 0 , we
obtain the following second limit:

Q ≤ π
4(1 − ksquare

2 )
= ℎ(ksquare) = f(ksquare)

2
,

(2.20)ℎmax = ℎ(ksquare = 1) = ∞, ℎmin = ℎ(ksquare = 0) = π
2 = 0.8862.

Hence, there are two upper limits of Q, that is, functions f(ksquare) and h(ksquare) described
by equations (2.18) and (2.20), respectively. Since h(ksquare)=f(ksquare)/ 2 , that is h(ksquare) <
f(ksquare), therefore the smaller upper limit h(ksquare) is the stronger.

3. Results
Figure 5 shows the relation ksquare(kcircle, Q) between variables ksquare and kcircle decribed
by equation (2.11) for three different Q values. The curve with Q1 = 0.5 does not reach the
horizontal axis of kcircle, because according to equation (2.15), the numerical value pairs (Q,
kcircle) falling in the prohibited area below curve q(kcircle) cannot occur.

Figure 6 displays the diameter acircle(kcircle, F) of a cylindrical plant stem and the side length
asquare(ksquare, F) of a quadratic plant stem versus kcircle and ksquare for a given cross-section
area F = 0.1 m2.

Figure 7a shows the values of quotient J = Isquare/Icircle calculated from equation (2.13) as
functions of the variables kcircle = acircle,inner/acircle and Q = asquare/acircle. If J = Isquare/Icircle
> 1, then with the same cross-section area (i.e. with uniform plant material), the quadratic
plant stem is more resistant to bending and torsion than the cylindrical stem, which means a
biomechanical advantage for square-stemmed plants over circle-stemmed ones. In figure 7a, we
can see that for all 0 ≤ kcircle < 1 values, J = Isquare/Icircle > 1 in the green region of the Q–kcircle
domain above curve z(kcircle) given by equation (D 1) (given in appendix D) and curve q(kcircle)
is described by equation (2.15), while J = Isquare/Icircle < 1 is in the red region between curves
z(kcircle) and q(kcircle). Hence, in the green and red regions, the quadractic and the cylindrical
stems are the stronger. Figure 7b presents examples for the shapes of plant stems with square-
and circular-collar cross-sections of the same area versus some values of variables Q and kcircle.

Figure 8a displays the values of J(ksquare, Q) = Isquare/Icircle calculated from equation (2.17)
versus the variables ksquare = asquare,inner/asquare and Q = asquare/acircle. Here it is true again
that if J(ksquare, Q) = Isquare/Icircle > 1, then the quadratic plant stem is mechanically stronger
than the cylindrical stem in the case equal cross-section area. According to figure 8a, J(ksquare,
Q) = Isquare/Icircle > 1 in the green region of the Q-ksquare domain between curve h(ksquare)
described by equation (2.20) and curve p(ksquare), given by the equation (D 2) (see Appendix
D), while J(ksquare, Q) = Isquare/Icircle < 1 is true for the red region below curve p(ksquare).
Hence, in the green region, quadratic plant stems are mechanically more advantageous than
cylindrical stems, and vice versa in the red region. Figure 8b presents examples for the shapes of
plant stems with square- and circlular-collar cross-sections of equal area versus some values of
variables Q and ksquare.

Hence, in the upper green region of domains Q-kcircle and Q-ksquare in figures 7a and 8a,
quadratic plant stems endure the strains induced by wind load and gravitation better than

8

royalsocietypublishing.org/journal/rspa Proc. R. Soc. A 481: 20240445
 D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//r
oy

al
so

ci
et

yp
ub

lis
hi

ng
.o

rg
/ o

n 
15

 J
an

ua
ry

 2
02

5 



cylindrical plant stems, while in the lower red region the opposite is true. This finding serves an
explanation of the mechanical advantage of quadratic plant stems against cylindrical ones.

4. Discussion
Stems function as supports for plants but also carry food and water. There are many biome-
chanical and physiological reasons of the enormous variation between stems from grass blades
to tree trunks, how they form and work, what happens inside them, why easily bent stems and
stiff stems can give plants different advantages, why stems grow sideways, etc [3,8,20–22]. This
variability and adaptation of stems allow plants to survive in different habitats and conditions.
Supporting mechanics is only one of the several vital roles of stems. In this work we studied

Q3 = 1.5

1

0 1

Q2 = 1

Q1 = 0.5

ksquare

kcircle

Figure 5. Curves ksquare(kcircle, Q = asquare/acircle) for Q1 = 0.5, Q2 = 1 and Q3 = 1.5 calculated from equation (2.11).

a

0 1

8

acircle,min

acircle(kcircle)

asquare(ksquare)

ksquare

kcircle

asquare,min

Figure 6. Diameter acircle(kcircle, f) and side length asquare(ksquare, f) of cylindrical and quadratic plant stems described by
equation (2.16) for the same cross-section area F = 0.1 m2 as functions of 0 ≤ kcircle ≠ ksquare < 1, where the relation
between ksquare and kcircle is described by equation (2.11).
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only one aspect of the structure and mechanics of plant stems, that is, a possible mechanical
advantage of quadratic stems against cylindrical ones.

The cross-section of plant stems is most often circular, but there exist also square, triangle
and elliptic cross-section shapes, although the latter are quite rare. The benefits of the most
common cylindrical stems compared to other cross-section shapes is not well understood. In
this work, we started from the fact that the moment of inertia I of a plant stem — depending on
the shape of its cross-section—determines the resistance of the stem to the mechanical (bending
and torsion) deformations induced by the wind load and gravitation. Since a larger I results
in greater resistance, therefore, for the same material (i.e. cross-section area) there are certain
quadratic stems which have larger I than cylindrical ones.

We have calculated and compared the moments of inertia Isquare and Icircle of plant stems
with square- and circular-collar cross-sections of the same area (material use) as functions of
kcircle = acircle,inner/acircle, ksquare = asquare,inner/asquare and Q = asquare/acircle (table 1). We found
that Isquare and Icircle are rotation invariant, that is they are independent of the orientation of the
axis crossing the geometrical centre of these collars.

We found for any 0 ≤ kcircle < 1 value, that in the Q–kcircle variable domain (figure 7a), the
region above curves z(kcircle) and q(kcircle), the quotient J(Q, kcircle) = Isquare/Icircle is larger than
1, while in the region between curves z(kcircle) and q(kcircle), this quotient is smaller than 1. Thus,
in the former variable region, the quadratic stem shape is better, because it has a larger moment
of inertia, and therefore is more resistant to mechanical deformations, while in the latter region
the cylindrical stem shape is more resistant.

We also found for any 0 ≤ ksquare < 1 value, that in the region between curves p(ksquare) and
h(ksquare) of the Q–ksquare variable domain (figure 8a), the quotient J(Q, ksquare) = Isquare/Icircle
is larger than 1, while in the region below curve p(ksquare) this quotient is smaller than 1.

1.4

(a) (b)
Q = a

square
/a

circle

J = I
square

/I
circle

1.2

4

3

2

1

0

1.0

0.8

0.8862 0.8660

0.6

0.4

0.2

0 0.2

0.1518

0.4

Prohibited area

0.6 0.8 1 k
circle

q (k
circle

)

z (k
circle

)

1.4

Q = a
square

/a
circle

1.2

1.0

0.8

0.8862 0.8660

0.6

0.4

0.2

0 0.2 0.4

Prohibited area

0.6 0.8 1 k
circle

q (kcircle)

z (kcircle)

Figure 7. (a) Colour-coded values of J(Q, kcircle) = Isquare/Icircle calculated for the same cross-section area from equation
(2.13) as functions of Q = asquare/acircle and kcircle = acircle,inner/acircle, where the equation of the boundary curve q(kcircle) of
variable Q is given by equation (2.15), and equation (D 1) describes the curve z(kcircle) along which J(Q, kcircle) = 1. The colour
shade is green or red, if J(Q, kcircle)>1 or J(Q, kcircle) < 1, respectively. According to equation (2.15), numerical value pairs (Q,
kcircle) falling in the yellow prohibited area below curve q(kcircle) cannot occur. (b) Cross-section shapes of quadratic (pink)
and cylindrical (blue) plant stems with the same area displayed for 20 different (Q, kcircle) value pairs.
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Consequently, in the former variable region, the quadratic plant stems are more resistant to
bending and torsion deformations, while in the latter region, the cylindrical stems are more
resistant.

The results presented here quantify the values of the relative stem width Q = asquare/acircle
at which a quadratic plant stem is stronger (J = Isquare/Icircle > 1) than a cylindrical stem
for a given cross-section area F, and for a particular parameter pair ksquare and kcircle being
not independent of each other. However, there is still no explanation as to why the plant in
question does not have such configurations of the parameter pair kcircle and acircle for which the
cylindrical stem is stronger than the quadratic one (J = Isquare/Icircle < 1), and therefore the stem
is cylindrical instead of quadratic. There may still be unknown biological (plant physiological)
reasons for this that precludes the realization of the configurations of the parameter pair kcircle
and acircle, which ensures the mechanical advantage of the cylindrical stem.

Following our analytical calculations a practical question arose. To what extent do our
theoretical results match the cross-sectional shapes of actual plant stems? To answer this
question, it would be necessary to know the ranges of parameters kcircle = acircle,inner/acircle
(figure 7) and ksquare = asquare,inner/asquare (figure 8) of plant species with circular and square
hollow stems (tables 2 and 3 in appendix A). However, such comprehensive plant-anatomical
data are not available in the literature. Similar measurements have already been performed on
human and animal gas- and marrow-filled long bones: to test the biomechanical optimality of
the wall thickness of cylindrical hollow limb bones (humeri, femora, tibiotarsi) in the red fox
(Vulpes vulpes) [23], in human mummies [24], as well as in crows (Corvus corone cornix) and
magpies (Pica pica) [25]. The values of k = ainner diameter/aouter diameter were measured along

J = Isquare/Icircle

5

4
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0

1.4

(a) (b)
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Figure 8. (a) Colour-coded values of J(Q, ksquare) = Isquare/Icircle calculated for the same cross-section area from (2.17) as
functions of Q = asquare/acircle and ksquare = asquare,inner/asquare, where the equation of the upper boundary curve h(ksquare)
of variable Q is given by (2.20), and (D 2) in appendix D describes the curve p(ksquare) along which J(Q, ksquare) = 1. The
colour shade is green or red, if J(Q, ksquare) > 1 or J(Q, ksquare) < 1, respectively, while the prohibited area of the Q–kcircle
domain is coloured by yellow. According to (2.20), numerical value pairs (Q, ksquare) falling in the yellow prohibited area
above curve h(ksquare) cannot occur. (b) Cross-sectional shapes of quadratic (pink) and cylindrical (blue) plant stems with the
same area displayed for 18 different (Q, ksquare) value pairs. With the aim of a better visualization, in the row with Q = 0.6 the
shapes are enlarged by factor 2 (×2), while in rows with Q = 1 and Q = 1.4 by factor 3 (×3).
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these bones from X-ray photographs. It is a task of future studies to measure the values of kcircle
and ksquare on cylindrical and quadratic plant stems.

In real plants, the stems are often hard near the epidermis and soft inside. In our analytical
calculations, we did not take into consideration the possible change of hardness (i.e. Young’s
modulus E and shear modulus G) of the stem material along the cross-section. For mathematical
simplicity, we considered the stem material to be uniform, that is, homogenous and anisotropic.
A future improvement of our theoretical calculations should take into account such non-uni-
formity of hardness in cross-sectional structures of real plant stems. However, to this end,
the spatial distribution of E and G should be measured along the cross-section, which is a
challenging biometric task. It would be difficult to predict quantitatively the influence of such
non-uniformity on the moments of inertia Isquare and Icircle of quadratic and cylindrical plant
stems, and thus, on the main results presented here (figures 7 and 8). Nevertheless, we assume
that in case of non-uniform stems, the quotient J = Isquare/Icircle may have qualitatively similar
characteristics (i.e. dependence on Q, ksquare and kcircle) to those of uniform stems (figures 7 and
8) found in this work.

Here, we have concentrated on the comparison of the moments of inertia Isquare and Icircle of
quadratic and cylindrical hollow plant stems possessing concentric squares or circles, respec-
tively, as outer and inner boundaries of the plant material, because the majority of hollow stems
have such a concentric structure. We determined those values of the control parameters k and
Q (table 1) of the cross-section shape of quadratic and cylindrical stems with the same area, for
which Isquare > Icircle, meaning that the former stems are more resistant to bending and torsion
deformations induced by wind load and gravitation than the latter stems.

Similarly to the present work, Shima et al. [18] calculated the moment of inertia of a rounded
square with rounded edges and fillet corners. From this they derived the so-called improve-
ment ratio η = (Rrs – Ra)/Ra as a function of the cross-sectional shape, ranging from an exact
circle to an exact square with sharp vertices. Here, Rrs = Irs/A and Irs are, respectively, the
gyration radius and moment of inertia of the plant material sandwiched by two concentrically
arranged rounded squares, while Ra = Ia/A and Ia are, respectively, the gyration radius and
momentum of an annulus with the same cross-section area A as the rounded square. The
gyration radius measures the buckling resistance of a column under axial compression. Ιf η >
0, then Rrs > Ra, that is, Irs > Ia, therefore the stem with a rounded square cross-section is more
resistant to buckling than that of the cylindrical stem.

Indirectly, through the gyration radius, Shima et al. [18] compared practically the moments
of inertia of an annulus and a collar between two concentric rounded squares with the same
area of annulus and collar versus the following four geometric parameters: (i) radius a of a
circle with the same area as the rounded square, (ii) side length ℓ of a reference square within
the rounded square, (iii) angle θ between a straight line passing through the upper-right vertex
of the reference square and the square’s horizontal side, and (iv) distance h of the vertex from
the rounded square along the straight line; a determines the same area of the annulus and the
rounded square collar, ℓ and h control the dimensions of the inner reference square and the
outer rounded square, while θ controls the roundness of the latter.

Shima et al. [18] calculated the improvement ratio η (involving the moments of inertia)
versus the same aforementioned four parameters. They found that, to obtain a greater η, it
is advantageous to make the outer boundary of the hollow stem more square while making
the inner boundary more circular. This general result relates to the earlier special finding of
Gere & Timoshenko [26], who showed that the cross-sectional performance (i.e. resistance to
mechanical deformations) is highest when the outer boundary is that of a square with sharp
vertices and the inner boundary is a circle. In the opinion of Shima et al. [18], an exact square
may not be preferred as the outer boundary, because when the hollow column bends, stress
concentrations occur around acute vertices, so that locally it may break. They suggested that to
prevent local breaking, fillet corners represent the best solution. They demonstrated that such
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filleted corners do not significantly reduce the cross-sectional moment of inertia I of the hollow
square column.

To summarize: although using various approaches with different geometrical parameters,
Shima et al. [18], and we in this work, compared indirectly/directly the moments of inertia
of rounded/sharp quadratic and cylindrical hollow plant stems to determine those parameter
configurations at which quadratic stems are more resistant to mechanical distortions than
the most widespread cylindrical stems. Both approaches provide clear results regarding the
geometrical prerequisites of the mechanical advantage of quadratic or cylindrical plant stems
over the other.

As discussed in §1, in addition to plants with circlular (table 2 in appendix A) and square
(table 3 in appendix A) stem cross-sections, there are also plants, for which the stem cross-sec-
tions are trianglular [16] or elliptic [17]. The biomechanical study of triangular and elliptical
plant stems is a future task, in which the moment of inertia I of an equilateral triangle and
an ellipse is to be calculated for an axis closing angle α with the triangle’s side length and the
ellipse’s major axis. Other future research could be to investigate the ecological implications
of different stem shapes: e.g. possible correlations between stem shape and the occurrence of
certain environmental mechanical stresses, for example wind load.

5. Conclusions
The moments of inertia Isquare and Icircle of plant stems with square- and circlular-collar
cross-sections are rotation invariant, that is they are independent of the orientation of the axis
crossing the geometrical centre of these collars.

In the region above curves z(kcircle) and q(kcircle) of the Q–kcircle variable domain (where 0 ≤
kcircle = acircle,inner/acircle < 1, Q = asquare/acircle) a quadratic stem shape (with outer side length
asquare) is more resistant to bending and torsion deformations (figure 7) than the corresponding
cylindrical stem of the same cross-section area (i.e. material use) with outer side diameter acircle.
On the other hand, in the region between z(kcircle) and q(kcircle), the cylindrical stem shape is
more resistant mechanically.

Similarly, in the region between curves p(ksquare) and h(ksquare) of the Q–kcircle variable
domain (where 0 ≤ ksquare = asquare,inner/asquare < 1) a quadratic stem shape is more resistant
to mechanical deformations (figure 8) than the corresponding cylindrical stem of the same
cross-section area, while in the region below p(ksquare), the cylindrical stem shape is more
resistant.
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Appendix A: tables of flower names
See tables 2 and 3.

Table 2. Latin and English names of 10 well-known flower species with a cylindrical stem [27]
latin name english name

Taraxacum officinale dandelion

Phragmites australis common reed

Dendrocalamus sinicus dragon bamboo

Triticum aestivum common wheat

Reynoutria japonica japanese knotweed

Equisetum arvense horsetail

Angelica archangelica angelica

Foeniculum vulgare fennel

Levisticum officinale lovage

Lupinus perennis lupinus

Table 3. Latin and English names of 84 flower species with a square stem [28]
latin name english name

Pentaglottis sempervirens green alkanet

Lamiastrum galeobdolon yellow archangel

Melittis melissophyllum bastard balm

Clinopodium vulgare wild basil

Galium saxatile heath bedstraw

Campanula trachelium nettle-leaved bellflower

Betonica officinalis betony

Bryonia dioica white bryony

Ajuga reptans bugle

Poterium sanguisorba ssp. balearicum fodder burnet

Buddleja×weyeriana Weyer’s butterfly bush

Centaurium erythraea common centaury

Stellaria neglecta greater chickweed

Salvia nemorosa balkan clary

Galium aparine cleavers

Diphasiastrum alpinum alpine clubmoss

Valerianella rimosa broad-fruited cornsalad

Melampyrum pratense common cow-wheat

Lysimachia nummularia creeping jenny

Cruciata laevipes crosswort

Clinopodium ascendens common calamint

Leucanthemum vulgare oxeye daisy

(Continued.)
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Table 3. (Continued.)
latin name english name

Lamium hybridum cut-leaved dead-nettle

Rumex conglomeratus clustered dock

Viola riviniana common dog-violet

Phygelius capensis cape figwort

Erigeron acris blue fleabane

Gentianella amarella autumn gentian

Lycopus europaeus gipsywort

Parnassia palustris grass of parnassus

Glechoma hederacea ground ivy

Erica×darleyensis darley dale heath

Galeopsis bifida bifid hemp-nettle

Ballota nigra black horehound

Persicaria campanulata lesser knotweed

Stachys byzantina lamb’s ear

Lythrum salicaria purple loosestrife

Pulmonaria officinalis lungwort

Sherardia arvensis field madder

Origanum vulgare wild marjoram

Polygala vulgaris common milkwort

Mentha suaveolens round-leaved mint

Nonea lutea zellow monkswort

Leonurus cardiaca motherwort

Cerastium fontanum mouse-ear

Brassica nigra black mustard

Urtica dioica ssp. galeopsifolia fen nettle

Solanum nigrum black nightshade

Atriplex laciniata frosted orache

Viola arvensis field pansy

Aethusa cynapium fool’s parsley

Mentha pulegium pennyroyal

Mentha×piperita peppermint

Anagallis arvensis ssp. foemina blue pimpernel

Ajuga chamaepitys ground pine

Plantago lanceolata ribwort plantain

Senecio inaequidens narrow-leaved ragwort

Rhinanthus minor yellow-rattle

Hypericum calycinum rose-of-sharon

(Continued.)
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Table 3. (Continued.)
latin name english name

Salvia officinalis sage

Prunella vulgaris selfheal

Jasione montana sheep’s bit

Scutellaria galericulata skullcap

Euonymus europaeus spindle

Asperula cynanchica squinancywort

Stellaria alsine bog stitchwort

Hypericum maculatum imperforate St John’s-wort

Tanacetum vulgare tansy

Vicia hirsuta hairy tare

Thymus polytrichus wild thyme

Thesium humifusum bastard-toadflax

Legousia hybrida Venus’s-looking-glass

Verbena officinalis vervain

Vicia sepium bush vetch

Viola odorata sweet violet

Galium odoratum woodruff

Stachys germanica downy woundwort

Achillea millefolium yarrow

Inula helenium elecampane

Phlomis russeliana Jerusalem sage

Verbena bonariensis Argentinian vervain

Nepeta×faassenii catmint

Chimonobambusa quadrangularis square bamboo

Lamium album var. barbatum mint

Appendix B: bending and twisting plant stems
To bend a plant at a given position of its stem, the following bending moment is necessary [2,4]:

(B 1)Mbend = ERI, I = A z2 ⋅ dA,

where E is the Young’s modulus of the stem material, R is the local radius of curvature, and
I is the second moment of inertia of the cross-section; I is a surfacial integral of z2·dA for the
whole cross-section, where dA is an infinitesimal area at distance z from the axis crossing the
geometrical centre of the cross-section.
To twist a plant stem of length L around its longitudinal axis by an angle φ, the following
torsion moment is necessary [2,4]:

(B 2)Mtorsion = GφL Iu + Iv , Iu = A v2dA, Iv = A u2dA,
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where G is the shear modulus of the stem material, Iu and Iv are the moments of inertia
calculated for two arbitrary orthogonal axes crossing each other at the geometrical centre of
the stem cross-section, dA is an infinitesimal area at distances v and u from axes u and v,
respectively. According to equations equations (B 1) and (B 2), bending or twisting a plant stem
requires the larger bending or torsion moments Mbend or Mtorsion, the larger are the moments
of inertia I or Iv+Iu, respectively.
It follows that if a plant stem has to endure the mechanical strains induced by wind load and
gravitation without fracture, then the stem I needs to be large enough. That is why we calculate
and compare the moments of inertia of quadratic and cylindrical stems.

Appendix C: calculation of the moment of inertia in a rotated
coordinate system
Consider an arbitrary cross-section of a plant stem in the Descartes system of coordinates x and
y, shown in figure 9. The moments of inertia Ix and Iy calculated for the orthogonal axes x and y
crossing each other at the origin O are

(C 1)Ix = A y2dA, Iy = A x2dA,

where dA is an infinitesimal area. The moments of inertia Iu and Iv calculated for the orthogonal
axes v and u rotated by angle α from axes x and y are

(C 2)Iu = A v2dA, Iv = A u2dA .

According to Goldstein et al. [2]:

Iu = Ixcos2α + Iysin2α − Ixysin2α,

(C 3)Iv = Ixsin2α + Iycos2α − Ixysin2α, where Ixy = A xydA .

Appendix D
Using equation (2.13), the expression of the curve z(kcircle) separating the upper green and
lower red regions in figure 7a is determined by the following equation:

J kcircle,Q = z = IsquareIcircle
= 16z4

3π 1 − kcircle
4 1 − 1 −

π 1 − kcircle
2

4z2

2

= 1

from which we get

z(kcircle) =
π 1 − kcircle

2 + 3 1 + kcircle
2

8 , 0 ≤ kcircle < 1,

(D 1)z kcircle = 0 = π + 3
8 ≈ 0.8762, z kcircle = 1 = 3

4 ≈ 0.8660.

In figure 7, the horizontal coordinate kcircle = k * = (π − 3)/(π + 3) ≈ 0.1518 of the intersection
point of curves z(kcircle) and q(kcircle) can be obtained from the following equation:z(k * ) = π 1 − k * 2 + 3 1 + k * 2 /8 = q(k * ) = π 1 − k * 2 /4.
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Using equation (2.17), the expression of curve p(ksquare) separating the upper green and lower
red regions in figure 8a is determined by the following equation:

J ksquare,Q = p = IsquareIcircle
=

4πQ2 1 + ksquare
2

6π − 12Q2 1 − ksquare
2 = 1,

from which we obtain

p ksquare = 3π
2π 1+ksquare

2 + 6 1 − ksquare
2 , 0 ≤ ksquare §lt;1,

(D 2)p ksquare = 0 = 3π
2π + 6 ≈ 0.8760, p ksquare = 1 = 3

4 ≈ 0.8660.

References
1. Gartner BL (ed). 1995 Plant stems - physiology and functional morphology. New York, NY:

Academic Press.
2. Goldstein H, Poole C, Safko J. 2001 Classical mechanics. p. 664, 3rd edition. New York, NY:

Pearson.
3. Mattheck C. 2002 Tree mechanics. Karlsruhe, Germany: Forschungszentrum Karlsruhe

GMBH.
4. Horváth G. 2009 Biomechanics: biological applications of mechanics. (in Hungarian), p. 368,

3rd edition. Budapest, Hungary: ELTE Eötvös University Press.
5. Dargahi M, Newson T, Moore J. 2019 Buckling behaviour of trees under self-weight loading.

Forestry 92, 393–405. (doi:10.1093/forestry/cpz027)
6. Cullen J. 2006 Practical plant identification - including a key to native and cultivated

flowering plants in north temperate regions. Cambridge, UK: Cambridge University Press.
7. Green J. 2015 Wild flowers. New York, NY: Rosen Publishing Group Inc.
8. Waldron M. 2015 Stems and trunks. London, UK: Raintree Publishers.
9. Christopher B. 2019 Royal horticultural society - encyclopedia of plants and flowers.

London, UK: Dorling Kindersley Ltd..

v

a

a

y

dA

u

O

u

x

v

X

y

Figure 9. Calculation of the moment of inertia I of an arbitrary cross-section (grey) of a plant stem in the x–y (black)
Descartes system of coordinates and in the system u–v (red) rotated by angle α around the origin O.

18

royalsocietypublishing.org/journal/rspa Proc. R. Soc. A 481: 20240445
 D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//r
oy

al
so

ci
et

yp
ub

lis
hi

ng
.o

rg
/ o

n 
15

 J
an

ua
ry

 2
02

5 

http://dx.doi.org/10.1093/forestry/cpz027


10. Schweingruber FH, Börner A. 2019 The plant stem - a microscopic aspect. Heidelberg,
Germany: Springer.

11. Blanchan N. 2020 Wild flowers worth knowing. New York, NY: Good Press.
12. Kramer C. 2024 The complete encyclopedia of plants - an in-depth guide to plant care and

identification. New York, NY: Dominic Cambareri.
13. M Grieve. 1995 A Modern Herbal. See https://botanical.com/.
14. https://wfoplantlist.org/
15. Gielis J. 2017 The geometrical beauty of plants. Paris, France: Atlantis Press. (doi:10.2991/

978-94-6239-151-2)
16. https://wildflowerfinder.org.uk/Menu2/StemShape/Triangular.htm
17. https://wildflowerfinder.org.uk/Menu2/StemShape/Oval.htm
18. Shima H, Furukawa N, Kameyama Y, Inoue A, Sato M. 2020 Cross-sectional performance of

hollow square prisms with rounded edges. Symmetry 12, 996. (doi:10.3390/sym12060996)
19. Bányai Á. 2024 Biomechanics of plant stems with square cross-section: what is the

advantage of square stems against cylindrical ones? BSc diploma work (in Hungarian).
Budapest, Hungary (supervisor: Gábor Horváth): Department of Biological Physics, ELTE
Eötvös Loránd University.

20. Mattheck GC. 1991 Trees: the mechanical design. Heidelberg: Springer. (doi:10.1007/978-3-
642-58207-3)

21. Mattheck C. 1997 wood: the internal optimization of trees. Heidelberg, Germany: Springer.
(doi:10.1007/978-3-642-61219-0)

22. Mattheck C. 1998 Design in nature - learning from trees. Heidelberg, Germany: Springer.
23. Bernáth B, Suhai B, Gerics B, Csorba G, Gasparik M, Horváth G. 2004 Testing the

biomechanical optimality of the wall thickness of limb bones in the red fox (Vulpes vulpes).
J. Biomech. 37, 1561–1572. (doi:10.1016/j.jbiomech.2004.01.008)

24. Évinger S, Suhai B, Bernáth B, Gerics B, Pap I, Horváth G. 2005 How does the relative wall
thickness of human femora follow the biomechanical optima? An experimental study on
mummies. J. Exp. Biol. 208, 899–905. (doi:10.1242/jeb.01475)

25. Suhai B, Gasparik M, Csorba G, Gerics B, Horváth G. 2006 Wall thickness of gas- and
marrow-filled avian long bones: measurements on humeri, femora and tibiotarsi in crows
(Corvus corone cornix) and magpies (Pica pica). J. Biomech. 39, 2140–2144. (doi:10.1016/j.
jbiomech.2005.06.013)

26. Gere JM, Timoshenko SP. 1972 Mechanics of materials. New York, NY: Van Nostrand
Reinhold Company.

27. https://wildflowerfinder.org.uk/Menu2/StemShape/Round.htm
28. https://wildflowerfinder.org.uk/Menu2/StemShape/Square.htm

19

royalsocietypublishing.org/journal/rspa Proc. R. Soc. A 481: 20240445
 D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//r
oy

al
so

ci
et

yp
ub

lis
hi

ng
.o

rg
/ o

n 
15

 J
an

ua
ry

 2
02

5 

https://botanical.com/
https://wfoplantlist.org/
http://dx.doi.org/10.2991/978-94-6239-151-2
http://dx.doi.org/10.2991/978-94-6239-151-2
https://wildflowerfinder.org.uk/Menu2/StemShape/Triangular.htm
https://wildflowerfinder.org.uk/Menu2/StemShape/Oval.htm
http://dx.doi.org/10.3390/sym12060996
http://dx.doi.org/10.1007/978-3-642-58207-3
http://dx.doi.org/10.1007/978-3-642-58207-3
http://dx.doi.org/10.1007/978-3-642-61219-0
http://dx.doi.org/10.1016/j.jbiomech.2004.01.008
http://dx.doi.org/10.1242/jeb.01475
http://dx.doi.org/10.1016/j.jbiomech.2005.06.013
http://dx.doi.org/10.1016/j.jbiomech.2005.06.013
https://wildflowerfinder.org.uk/Menu2/StemShape/Round.htm
https://wildflowerfinder.org.uk/Menu2/StemShape/Square.htm

	Biomechanics of plant stems with square and circular cross-sections: what is the advantage of quadratic stems over cylindrical ones?
	1. Introduction
	2. Calculation methods
	(a) Moment of inertia of a square rotated by angle α
	(b) Moments of inertia of square and circlular collars
	(c) Calculation of moments of inertia of square and circlular collars with the same area

	3. Results
	4. Discussion
	5. Conclusions


