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Supplementary Video Clips VC1, VC2, VC3, VC4, VC5, VC6, VC7 
with Legends 

 
 
Video Clip VC1: Positions (colored dots) of 1000 spherical iron (with density of 7.9·103 kg/m3) 
particles with different radius rdebris until 2 h 18 min 14 sec after their launch with tangential (α = 90o) 
circular orbit velocity v0 = 7.847 km/s from the same point at height h = 100 km from the Earth’s 
surface (see Figure 4A). The region above the Earth’s surface (h ≥ 0) is 100 times magnified for 
illustrative purposes. Different radii rdebris are coded with different colors from violet for the smallest 
(0.01 mm) to red for the largest (104 mm) particle. 
 
Video Clip VC2: Trajectories (series of dots of a given color) of 100 iron particles with different 
radius rdebris until 6 h 19 min 17 sec after their launch with tangential (α = 90o) circular orbit velocity 
v0 = 7.817 km/s from height h = 150 km (see Figure 4B). The region above the Earth’s surface is 66 
times magnified. Different radii rdebris are coded with different colors from violet for the smallest 
(0.01 mm) to red for the largest (104 mm) particle. 
 
Video Clip VC3: Trajectories of 20 iron particles with different radius rdebris until 2 h 10 min 27 sec 
after their launch with tangential (α = 90o) circular orbit velocity v0 = 7.877 km/s from height h = 50 
km (see Figure 4C). The region above the Earth’s surface is 200 times magnified. Different radii rdebris 
are coded with different colors from violet for the smallest (0.01 mm) to red for the largest (104 mm) 
particle. 
 
Video Clip VC4: Trajectories of 100 iron particles with different radius rdebris until 2 h 18 min 14 sec 
after their launch with tangential (α = 90o) circular orbit velocity v0 = 7.847 km/s from height h = 100 
km (see Figure 4D). The region above the Earth’s surface is 100 times magnified. Different radii 
rdebris are coded with different colors from violet for the smallest (0.01 mm) to red for the largest (104 
mm) particle. 
 
Video Clip VC5: Trajectories of 100 iron particles with different radius rdebris until 6 h 44 min 38 sec 
after their launch with initial velocity v0 = 4.57 km/s and angle α = 122.6o relative to the radial 
direction from the same point at height h = 10000 km above the Earth’s surface (see Figure 5A). The 
region above the Earth’s surface is not magnified. Different radii rdebris are coded with different colors 
from violet for the smallest (0.01 mm) to red for the largest (104 mm) particle. 
 
Video Clip VC6: Trajectories of 100 iron particles with different radius rdebris until 2 h 31 min 29 sec 
after their launch with initial velocity v0 = 5.65 km/s and angle α = 45o from height h = 100 km (see 
Figure 5B). The region above the Earth’s surface is 100 times magnified. Different radii rdebris are 
coded with different colors from violet for the smallest (0.01 mm) to red for the largest (104 mm) 
particle. 
 
Video Clip VC7: Trajectories of 30 (different angles α) × 11 (different radii r) = 330 spherical iron 
particles until 1 h 54 min 20 sec after the explosion of a space debris at height h = 1000 km above the 
Earth’s surface (see Figure 7). The initial velocity of all explosion fragments was v0 = 7 km/s and the 
angle of the initial velocity vector changed from α = 0o to α = 360o with an increment Δα = 12o (see 
Supplementary Video Clip VC7) where the region above the Earth’s surface is not magnified. 
Different radii rdebris are coded with different colors from violet for the smallest (0.01 mm) to red for 
the largest (104 mm) particle. 
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Supplementary Mathematical Formulae 
 

Gravitational Potential of the Geoid 
 
The gravitational potential U of the Earth is expressed in the form of the following series (Klinkrad 
2006d): 
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Jk = -ck0.           (A2) 
 
where φ and λ are the latitude and longitude of the Earth's spherical coordinate system, γ = 
6.67408·10-11 m3kg-1s-2 is the universal gravitational constant, mE = 5.972·1024 kg is the Earth’s mass, 

Pk(sinφ) are Legendre polynomials of degree k, )(sinm
k P  are associated Legendre functions of 

degree k and order m, 22 yxr  , r0 = 6378 km is the Earth’s average equatorial radius. 

 In (A1), the first component γmE/r is the mass point potential, which corresponds to an Earth 
with a spherical symmetric mass distribution. The first sum (being independent of λ) is the 
gravitational potential of a rotationally symmetric body. This sum includes the Pk(sinφ) Legendre 
polynomials, which are zonal spherical harmonic functions, therefore the Jk coefficients are called 
zonal harmonic coefficients. The even and the odd index coefficients k express the symmetry and the 
asymmetry of Earth to the Equator. 
 In the second sum of (A1), the components corresponding to m = k are the so-called sectorial 
harmonics, so ckk and skk are the sectorial harmonic coefficients. If 0 < m < k, then ckm and skm are the 
so-called tesseral harmonic coefficients. The sectorial and tesseral components express the deviations 
of the Earth's potential from the potential of a rotationally symmetric body. Using series (A1) and 
(A2), the geoid potential can be written in the following simpler form: 
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is the so-called perturbation function. The dimensionless Jk coefficients are available from tables. If 
k > 2, the values of Jk (< 10-6) are three orders of magnitude smaller than J2 (≈ 10-3). If m > 0, then 
ckm and skm < 10-6. Since we compute only the impact times and therefore we do not need high 
accuracy, all spherical harmonics can be neglected, except for the case k = 2, m = 0, thus we obtain: 
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Replacing (A5) into (A4), the perturbation function is: 
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Using (A5) and (A6), finally the perturbation function is: 
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If we want to take into consideration the geoid shape of the Earth, using the perturbation function 
(A7), the following two partial derivatives should be added to the right sides of the equations of 
motion (2.10): 
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