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Cloud cover estimation is an important part of routine meteorological observations. Cloudiness measure-
ments are used in climate model evaluation, nowcasting solar radiation, parameterizing the fluctuations
of sea surface insolation, and building energy transfer models of the atmosphere. Currently, the most
widespread ground-based method to measure cloudiness is based on analyzing the unpolarized intensity
and color distribution of the sky obtained by digital cameras. As a new approach, we propose that cloud
detection can be aided by the additional use of skylight polarization measured by 180° field-of-view im-
aging polarimetry. In the fall of 2010, we tested such a novel polarimetric cloud detector aboard the re-
search vesselPolarstern during expedition ANT-XXVII/1. One of our goals was to test the durability of the
measurement hardware under the extreme conditions of a trans-Atlantic cruise. Here, we describe the
instrument and compare the results of several different cloud detection algorithms, some conventional
and some newly developed. We also discuss the weaknesses of our design and its possible improvements.
The comparison with cloud detection algorithms developed for traditional nonpolarimetric full-sky
imagers allowed us to evaluate the added value of polarimetric quantities. We found that (1) neural-
network-based algorithms perform the best among the investigated schemes and (2) global information
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(the mean and variance of intensity), nonoptical information (e.g., sun-view geometry), and polarimetric
information (e.g., the degree of polarization) improve the accuracy of cloud detection, albeit
slightly. © 2015 Optical Society of America
OCIS codes: (010.1615) Clouds; (010.3920) Meteorology; (100.2960) Image analysis; (110.5405)

Polarimetric imaging; (280.4991) Passive remote sensing.
http://dx.doi.org/10.1364/AO.54.001065

1. Introduction

Cloud cover is a routine meteorological observation,
which can be used in parameterizing the fluctuations
of sea surface insolation [1] for nowcasting solar
radiation in the management of solar power plants
[2] and validating climate models if long time series
are available [3]. Ground-based estimates of cloudi-
ness were traditionally obtained by human observa-
tions, which, however, were subjective, relatively
coarse (given in octas), infrequent, and expensive.
The appearance and rapid spread of compact digital
cameras made it possible to develop low-cost auto-
mated cloud cameras, which can provide an alterna-
tive dataset of objective and quantitative cloud cover
estimates based on the measured intensity and color
distribution of the sky.

A large number of photometric sky imagers are
now available on the market, such as (1) Total Sky
Imager (Yankee Environmental Systems); (2) Whole
Sky Imager (Scripps Institute of Oceanography), and
(3) All Sky Imager (Atmospheric Physics Group [4])
just to mention a few. All current sky imagers use
nonpolarimetric information (e.g., color) for cloud
detection.

As a new approach, we propose that clouds might
be better detected from the ground with the addi-
tional use of skylight polarization measured by
180° field-of-view imaging polarimetry [5,6].

As confirmed by ground-based polarimetric mea-
surements of the downward directed light field at
the bottom of the atmosphere, the celestial distribu-
tion of the angle of polarization α exhibits a very
robust pattern, which, qualitatively, is the same
under all possible sky conditions. The only difference
among clear [7,8], partly cloudy [8–10], totally over-
cast [6], foggy [10], smoky [11], and tree-canopied
[12] skies occurs in the degree of linear polarization
p: the higher the optical thickness of the nonclear
atmosphere, the lower the p-value. The robust
behavior of the angle of polarization is due to the pre-
dominant role of single scattering, which controls α,
even in multiple scattering situations, e.g., under
clouds or fog. The degree of polarization p, on the
other hand, is more sensitive to the type and size
of particles and, thus, might be used to improve cloud
detection [13]. The theory and measurement of sky
polarization under clear and cloudy conditions,
including its expected patterns due to scattering
(Rayleigh, clouds, and aerosols) and gaseous absorp-
tion, are reviewed in [13–15].

The use of polarimetric information in cloud prop-
erty retrievals was pioneered by the satellite-borne

POLDER (Polarization and Directionality of the
Earth’s Reflectances) and PARASOL (Polarization
and Anisotropy of Reflectances for Atmospheric
Sciences with Observations from a Lidar) instru-
ments [16,17]. Such space-based polarimetric mea-
surements are routinely used to distinguish water
clouds from ice clouds [15] and determine the effec-
tive radius of cloud droplets [18]. In contrast, ground-
based polarimetric measurements are mainly used to
retrieve the size distribution of aerosols [19], but
their application for cloud property retrievals is still
in its infancy.

In autumn 2010, we tested a newly developed
imaging polarimetric cloud detector aboard the re-
search vessel Polarstern during the trans-Atlantic
expedition ANT-XXVII/1. Here, we describe our
instrument and discuss its weaknesses and possible
improvements. The obtained measurement data
were processed with a suite of cloud detection
algorithms, which included the most frequently used
color-based schemes previously developed for
traditional full-sky imagers as well as new schemes
that take advantage of polarimetric information.
Although the considered algorithm suite was not ex-
haustive, it was sufficiently representative to allow
the comparative evaluation of polarimetric and non-
polarimetric methods.

2. Materials and Methods

A. Expedition ANT-XXVII/1

Performing measurements on the Polarstern allowed
us to sample different climatic regions and compare
the results of the different cloud detection algorithms
under sky conditions with highly varying cloud cover-
age. Furthermore, we could test the durability of our
cloud detector under the extreme environmental
conditions of a trans-Atlantic voyage.

The ANT-XXVII/1 expedition [20] of the research
vessel Polarstern [Fig. 1(a)] transected the Atlantic
Ocean from Bremerhaven, Germany, to Cape Town,
South Africa, via Gran Canaria, Canary Islands, be-
tween 25 October and 26 November 2010 [Fig. 1(b)].
The first week of the expedition experienced stormy
weather in the Bay of Biscay, preventing the instal-
lation of our cloud detector. After leaving the stormy
zone, we successfully mounted the cloud detector on
the upper deck of the ship on 2 November. The cloud
detector was working for 15 consecutive days after
installation and provided an ample amount of test
data.
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B. Full-Sky Imaging Polarimeter

Our polarimetric cloud detector is a portable, single-
camera, rotating-analyzer imaging polarimeter.
It consists of an industrial digital camera, a 180°
field-of-view fisheye optics, a rotating filter wheel
with embedded polarizing filters, a sun shield
mechanism, an embedded controller, and a weather-
proof casing. The internal structure of the cloud
detector is shown in Figs. 1(c) and 2. The camera (Im-
aging Source DFK 41BU02) has a 1280 × 960 pixels
resolution 1∕2 in: format CCD (Sony ICX205AK)
with a Bayer filter that allows near-infrared mea-
surements. The sensitivity spectrum of the CCD is
shown in Fig. 3(a). The full sky-dome is mapped onto
a circular area of the CCD by a Fujinon FE185-
C046HA-1 180° field-of-view fisheye lens. The optical
axis of the lens was somewhat misaligned with re-
gards to the center of the CCD, resulting in a small
portion of the measurement area being nonutilized
(black data void areas in the sky images). The com-
putational method used to extract polarization infor-
mation from the three full-sky pictures taken
through linear polarizers with different directions
of their transmission axis has been described in
[5,6,15,21].

The disturbing reflection of intense direct sunlight
from the internal surfaces of the optical elements
was eliminated using a sun occultor, which shaded
the lens from direct sunlight. The Mueller matrix
of the fisheye lens was measured, as in [5,21]. We

found the influence of lens reflections on the polari-
zation state of incident light negligible. Essentially,
the same imaging-polarimetric instrument was used
in a previous study to successfully measure the
polarization transition between sunlit and moonlit
skies [22].

Fig. 1. (a) Research vessel Polarstern photographed by Karl Bumke during the ANT-XXVII/1 trans-Atlantic expedition. (b) The route of
the expedition from Bremerhaven, Germany, to Cape Town, South Africa, via Gran Canaria, Canary Islands, between 25 October and
26 November 2010 (source: http://www.awi.de/fileadmin/user_upload/MET/PolarsternExpeditionMaps/ANT‑XXVII‑1.png). (c) Our imag-
ing polarimetric cloud detector installed on the “monkey deck.”

Fig. 2. Cross section of our cloud detector showing its internal
structure. The rotating filter wheel between the fisheye lens
and the CCD camera contained five filters, as described in Table 1.
The independently controllable azimuth and elevation arms of
the sun occultor allowed moving the occultor to any position
of the acrylic dome to completely shade the fisheye lens from direct
sunlight.
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A custom-made filter wheel was installed between
the CCD sensor and the fisheye lens, which was
rotated by a servomotor, allowing fast positioning
of five different filters. The properties of the filters
are listed in Table 1. For visible measurements, we
used an infrared cut-off filter, the transmission spec-
trum of which is shown in Fig. 3(b). For near-infrared
measurements, on the other hand, we used a visible
cut-off filter with a transmission spectrum, as shown
in Figs. 3(c) and 3(d). Although the instrument was

also able to take near-infrared images, they were not
used in this study.

A custom-made sun shield, mounted to the end of
an arm in front of the lens, moved a black disk along
two axes (azimuth and elevation). The disk could be
positioned to shield the whole lens from direct sun-
light, which can cause flares due to internal reflec-
tions between the lens surfaces and, thus, lead to
artifacts in the evaluation of the measurements.
The sun shield was moved by servomotors, allowing
accurate and fast repositioning to account for ship
movements.

A custom-made controller with an embedded com-
puter was responsible for scheduling the observa-
tions, positioning the sun shield, controlling the
filter wheel, triggering the camera, and storing the
images. The computer was managed through a stan-
dard TCP/IP connection for configuration, mainte-
nance, and downloading the acquired images.

The entire systemwas protected from the elements
by a robust weatherproof Peli 1650 case. The cover of
the case was cut out in order to mount a 42 cm diam-
eter acrylic dome, large enough to allow free move-
ment of the sun shield. The interface between the
case and the dome was sealed, and the internal

Fig. 3. (a) Sensitivity spectra of the CCD sensor used in our imaging polarimetric cloud detector. The red channel had a sufficiently high
sensitivity even in the 700 nm < λ < 830 nm range to take measurements in the near-infrared part of the spectrum. (b) Transmission
spectrum of the infrared (IR) cut-off filter used for visible imaging. The filter efficiently cut off wavelengths above 700 nm. (c), (d) Trans-
mission spectrum of the visible cut-off filter used for near-infrared imaging. (c) Visible part and (d) the extended infrared part of the
transmission spectrum of the filter. The filter efficiently cuts off wavelengths below 650 nm allowing near-infrared measurements.

Table 1. Five Filters Used in the Built-In Rotating Filter Wheel of
Our Imaging Polarimetric Cloud Detectora

No. Filter

1 Visible: infrared cut-off filter
2 Infrared: visible cut-off filter
3 Visible polarized: infrared cut-off and visible

polarizer filters with 0° transmission angle
4 Visible polarized: infrared cut-off and visible

polarizer filters with 45° transmission angle
5 Visible polarized: infrared cut-off and visible

polarizer filters with 90° transmission angle
aFor calibration, we used a visible (optical) filter.

Infrared measurements were strictly experimental.
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atmosphere was controlled by a Peltier-element-
based cooler and a low-wattage heater foil, with
humidity kept low using 1 kg of silica gel.

In certain figures (e.g., Fig. 4), a ghost image of
clouds can be seen. This was the consequence of
cloud motion during the sequential acquisition of
the three linearly polarized photos needed for imag-
ing polarimetry. The tilting of the vessel in heavy
seas could further increase this ghosting/blurring.
Such motion artifacts can also be seen in a few com-
puted polarization patterns; for example, in the de-
gree of polarization shown in Fig. 4, clouds appear
with darker contours. Eliminating such motion ef-
fects requires the near simultaneous acquisition of
the three photos, which will be achieved using three
separate cameras with fixed polarizers [5] in a future
improved version of our system. For further com-
ments on the possibility of eliminating motion
effects with the help of ship attitude data, see the
Discussion.

A few images also showed a so-called smear effect:
narrow overexposed stripes due to saturated pixels.

This was caused by the architecture of the employed
CCD sensor and can be eliminated using a CMOS
sensor instead, which does not suffer from such arti-
facts. Prior experience indicates that our imaging
polarimetric technique is able to measure the degree
and the angle of skylight polarization with an accu-
racy of �1% and �1°, respectively [5–13,15,21–23].
However, because of the drawbacks of our cloud
detector (poor-quality polarization filter, sequential
capture of the polarization images on a moving
platform), the accuracy was slightly smaller (about
�1–3% and �1–3°).

In a pilot measurement, we determined the effect
of the used acrylic dome on the measured skylight
polarization. The effect of the acrylic material turned
out to be an order of magnitude smaller than that
of dust, raindrops, and sea salt crystals that unavoid-
ably contaminated the dome during the field
measurements. Therefore, we concluded that it was
unnecessary to further characterize the negligible
polarization effect of the acrylic dome, which, other-
wise, had excellent optical quality.

C. Testing Method

We selected 50 polarization images for evaluation
from the large number of measurements taken
during the Polarstern expedition (e.g., Fig. 4). The
test data set was compiled to represent sky condition
diversity as much as possible. Therefore, we pre-
screened the images to avoid duplicating similar sky
conditions; otherwise, data selection was random.
This prescreening did not bias the results toward
one or another algorithm. A static background mask
was created to block out pixels corresponding to
the ship’s superstructure. For each selected image,
three independent cloud masks were then derived
by three human observers, based exclusively on
the visible color and intensity information, that is,
without using near-infrared and polarization infor-
mation. In the final consensus cloud mask, which
was considered the “truth,” a pixel was cloudy if at
least two observers classified it as such; otherwise,
it was clear sky. The error in a human observer’s
cloud detection was defined as the number of pixels
for which the observer’s classification disagreed with
the consensus divided by the total number of sky pix-
els outside the static background mask and averaged
for the 50 measurements. The 50 selected images
were randomly divided into two groups of 25 images
to form a training set and a test set. Using the train-
ing set, we determined the optimal value of the
tunable parameters for the 13 cloud detection algo-
rithms described below and then evaluated the per-
formance of the optimized algorithms on the test set.
To characterize the accuracy of an algorithm, we
counted the total number Nt of pixels in the test
set, excluding the background and the total number
Ne of pixels erroneously classified compared with the
consensus cloud mask. The error E of an algorithm
was then defined as E � Ne∕Nt. To increase the stat-
istical significance of our results, the calculations

Fig. 4. Results of one of the 50 sky-polarimetric measurements
used for training, optimizing, and testing the 13 different cloud de-
tection algorithms. This particular measurement was performed
at a low solar elevation angle of 10° and relative cloudiness of
61%, according to the consensus cloud mask. The observation
tower, chimney, and upper-deck railings of the Polarstern obscured
part of the sky. The optical axis of the fisheye lens and the center of
the CCD were slightly misaligned, leading to loss of data in the
minor segment (black/red area) at the top of each circular image.
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were repeated for 10 different, randomly chosen
training set–test set combinations.

D. Cloud Detection Algorithms

We developed several different cloud detection algo-
rithms (or “detectors”), some of which are based
solely on photometric information (color images),
while others are based on combined photometric
and polarimetric information. In addition to our
novel algorithms, we implemented standard algo-
rithms recently published in the literature, such as
the well-known red–blue ratio (RBR) method [3,24].
On board the Polarstern, there was also a simple pho-
tometric full-sky cloud imager, which used the RBR
algorithm. Generally, we tried several variants of
every algorithm, but only the best-performing one
was incorporated into the present work. In total,
13 cloud detectors were tested, which are summa-
rized below.

1. Red-Blue Difference
The red-blue difference (RBD) detector uses the red
(IR) and blue (IB) intensity and classifies a pixel
as clear sky if the difference IR − IB < crbd and as a
cloud, otherwise, where crbd is a threshold parameter
[25]. Clear sky is typically blue, leading to negative
difference values, while clouds are typically white/
gray or reddish, resulting in near-zero or slightly
positive differences.

2. Whiteness Detector
The whiteness detector (WD) [9] classifies a pixel as a
cloud if it is white/gray and as clear sky, otherwise. A
pixel is considered white/gray if 1 − IR∕IB < cw and
1 − IG∕IB < cw, where IR, IG, and IB are the red,
green, and blue intensities, and cw is a tunable
parameter. In our experience, the conditions IR <
IB and IG < IB were always satisfied for the full
sky; hence, the values of 1 − IR∕IB and 1 − IG∕IB were
always positive.

3. Red-Blue Ratio
Similar to RBD, the red-blue ratio (RBR) detector
[3,24] also uses the red (IR) and blue (IB) intensity
and classifies a pixel as clear sky if the ratio IR∕IB <
crbr and as clouds, otherwise, where crbr is a tunable
parameter. Clear sky is typically blue, leading to
smaller ratios, while clouds are typically white/gray
or reddish, leading to larger ratios.

4. k -Nearest Neighbors
The above algorithms with one or two control param-
eters share a common weakness in that they only
allow limited fine-tuning of cloud detection. To over-
come this issue, we implemented the k-nearest
neighbors (kNN) algorithm, which is capable of
supervised learning. Note that the kNN algorithm
was previously used for cloud type classification
[25]. During the training process, we created a

256 × 256 × 256 color cube array initialized to zero.
Then each pixel in the training set was assigned
to a cell in this color cube based on the three mea-
sured intensities (IR, IG, and IB), and the cell counter
was increased by 1 if the pixel was cloudy and
decreased by 1 if it was clear sky (see Section 2.C).
Finally, for every pixel in the test set, we determined
the corresponding color cube cell and its kNN that
had nonzero count values, where k is a tunable
parameter. Distances in the array were calculated
by the 3D Euclidean formula. A tested pixel was clas-
sified as cloudy if there were more positive than neg-
ative count values among the neighboring cells and
as clear sky, otherwise. In essence, this procedure de-
termined whether a given (RGB) color was more
likely to be associated with clouds or clear sky.

5. Whiteness Detector with Average Intensity
The whiteness detector with average intensity
(WDAI), which we developed, is a variant of the WD,
where the threshold value cI�I� is not constant but
varies as a function of the intensity of the median-
filtered neighborhood of the investigated pixel. First,
the median-filtered intensity is calculated for each
spectral band, using a 135 × 135 pixel filtering win-
dow. This window with a diameter of 40.5° was deter-
mined by optimization. Then, the median-filtered
spectral-mean intensity of the given pixel is calcu-
lated: I � �IR � IG � IB�∕3. Finally, this spectral-
mean intensity is used to calculate the threshold
value cI�I� � aI · I � bI, where aI and bI are tunable
control parameters.

For the WDAI, both total intensity and unpolar-
ized intensity were tested, with the latter giving a
slightly smaller average cloud detection error. The
unpolarized intensity Iup of a given pixel is calculated
as the product of the total intensity I and the degree
of unpolarization 1 − p: Iup � I · �1 − p�.

6. Whiteness Detector with Solar Distance
The whiteness detector with solar distance (WDSD),
which we also developed, is yet another variant of the
WD detector similar to the WDAI detector, but, in
this case, the threshold parameter cd�d� is a function
of the Euclidean distance d between the investigated
pixel and the center of the sun in the image. The
threshold value is calculated as cd�d� � ad · d� bd,
where ad and bd are tunable parameters. The ration-
ale behind this algorithm is that, because the sky is
brighter near the sun, the WD detector can be im-
proved by making the threshold cd dependent on
distance from the sun. We also tested the algorithm
using angular distance on the sky-dome andManhat-
tan distance on the circular sky image; however, the
simple Euclidean distance gave the smallest average
cloud detection error.

7. Hybrid Thresholding Algorithm
The hybrid thresholding algorithm (HTA) operates
on the normalized IB∕IR ratio [defined as
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�IB∕IR − 1�∕�IB∕IR � 1�] using either fixed or mini-
mum cross entropy thresholding [26–28]. The uni-
or bimodality of the histogram of the normalized
IB∕IR ratio determines the applicable thresholding,
using the magnitude of the standard deviation for
selecting the thresholding method. An image con-
taining clouds and clear sky typically has a bimodal
normalized IB∕IR ratio histogram with larger stan-
dard deviation, while an image of completely clear
or overcast sky has a unimodal histogram with
smaller standard deviation. Therefore, the algorithm
selects between fixed and minimum cross entropy
thresholding based on the magnitude of the histo-
gram standard deviation.

We implemented the HTA algorithm based on [26].
However, while in [26] the near-horizon and near-sun
areas were masked out in the sky images, we tested
the algorithm on all sky pixels. For the fixed thresh-
old, we used cFIX � �1∕crbr − 1�∕�1∕crbr � 1�, where
crbr is the optimal parameter of the RBR detector.
The parameter to be optimized was the cSD standard
deviation threshold value, the magnitude of which
determined the thresholding method. If the standard
deviation of the normalized IB∕IR ratio histogram
was smaller than cSD, the fixed thresholding, other-
wise the minimum cross entropy thresholding
was used.

8. Degree of Polarization Difference in the Green
Spectral Range
The degree of polarization difference in the green
spectral range (pDG) detector classifies a sky pixel
as cloudy if pG − pBerry < cpDG, where pG is the degree
of linear polarization measured in the green spectral
range, pBerry is the degree of polarization calculated
from the Berry model of clear-sky polarization [29]
for the solar position of the measurement, and
cpDG is a tunable threshold. Otherwise, the pixel
is clear.

9. Degree of Polarization Ratio in the Green
Spectral Range
The degree of polarization ratio in the green spectral
range (pRG) detector classifies a sky pixel as cloudy if
pG∕pBerry < cpRG, where pG and pBerry are the same as
for pDG above, and cpRG is a tunable threshold.
Otherwise, the pixel is clear.

10. Neural Network
A large amount of extra information is encoded in po-
larimetric measurements, which can be incorporated
into an optimal cloud detection algorithm with the
lowest possible error. There is local optical informa-
tion, e.g., the red intensity or the blue degree of
polarization of the investigated pixel. In addition,
there is global optical information, such as the aver-
age intensity in the green channel or the variance of
the degree of polarization in the blue channel calcu-
lated over the entire image. There is also nonoptical
information, such as solar elevation or relative solar

azimuth. Some of these additional parameters can be
easily taken into account; others are more challeng-
ing to incorporate in a cloud detection algorithm.
The difficulty is to pin down how a human observer
determines whether light originating from a given
point of the sky represents a cloud or clear sky. It is
even possible that a human observer perceives light
with certain optical properties as a cloud in one par-
ticular situation but as clear sky in another.

To overcome some of these issues, in [4] a multi-
layer perceptron neural network (NN) was imple-
mented, which is capable of supervised learning
but limiting input data to local optical, nonpolarimet-
ric information. The authors’ aim was to find an
optimal balance between accuracy and speed.
Prompted by their results, we also implemented
a multilayer perceptron NN with the sigmoid activa-
tion function S�x� � 1∕�1� e−x�. To avoid the pos-
sibility of omitting potentially important input
information that the neural network could utilize
during training, we decided to use as many input
parameters as possible. However, investigating
whether each input parameter was, in fact, utilized
by the trained neural network is beyond the scope of
this paper.

The structure of our NN can be characterized by
the number of perceptrons in each layer. For exam-
ple, a network characterized by i − j − k − 1 contains
i perceptrons in the input layer, j perceptrons in the
first internal layer, k perceptrons in the second inter-
nal layer, and one perceptron in the output layer. The
input layer and every internal layer also contained
one extra perceptron, the so-called bias perceptron,
which did not connect to the previous layer and al-
ways had an output value of 1. The output layer con-
tained only one perceptron, the target output value of
which was 0 for clear sky and 1 for cloud. During
evaluation, the investigated pixel was classified as
clear sky if the output value of the output perceptron
was <0.5 and cloudy otherwise. We implemented
backpropagation in the learning algorithm with a
learning rate of 0.001 to avoid oscillation in the input
weights of the perceptrons. Each layer was fully con-
nected to the previous one. The input parameters
used are summarized in Table 2. Average and vari-
ance of intensity I and degree of polarization p of a
given pixel were calculated using a 3 × 3 pixels win-
dow around the given pixel. The simple intensity
neural network (SINN) and the simple degree of
polarization neural network (SpNN) were character-
ized by a layer structure of 7-3-1. The layer structure
of the complex nonpolarimetric neural network
(NNN) was 15-16-16-16-1, while that of the polari-
metric neural network (PNN) was 27-28-14-1.

E. Image Quality

The transportable polarimetric cloud detector built
specifically for the Polarstern expedition necessi-
tated the use of a rugged polarizer system, which was
of somewhat lower quality than that used in our
land-based instrument [5–12] and, thus, made the
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images slightly blurry (Fig. 4). We did not employ a
spectrally neutral (white or gray) reflective target for
white balance calibration either, due to the practical
difficulties posed by operating on board a vessel. The
lack of continuous white balance calibration
additionally turned the sky images slightly bluish.

The measurements, however, could still be used in
our comparison, because the input data were the
same for all implemented cloud detection algorithms,
and the algorithm parameters were optimized for
these images. Consequently, none of the algorithms
had a distinct advantage or disadvantage because
of the slight blurriness and bluish tint of the input
images.

3. Results

Some of the 50 selected sky scenes were overcast, and
some had<100% cloud cover with thick water clouds.
The least-cloudy case had about 20% cloudiness.
Here, we present one partly cloudy scene as an
example of sky-polarimetric measurements used for
training, optimizing, and testing the different cloud
detection algorithms (Figs. 4 and 5).

Figure 4 shows the patterns of intensity I, degree
of linear polarization p, and angle of polarization α in
the red (650 nm), green (550 nm), and blue (450 nm)
spectral channels. As shown, at a low solar elevation
of 10°, the degree of polarization was high (p > 50%)
in a wide band passing through the zenith
perpendicular to the solar–antisolar meridian, which
was generally in the blue clear-sky regions. In con-
trast, the light from clouds was only weakly polarized
(p < 10%). The distribution of the angle of polariza-
tion was mirror symmetrical to the solar–antisolar
meridian, independently of wavelength. These highly
consistent α patterns were only slightly disturbed by
clouds.

Figure 5 gives an example for cloud detection re-
sults obtained with the use of the intensity and
polarization patterns in Fig. 4. Figure 5(a) is the color
image of the sky (same as in Fig. 4), and Fig. 5(b) is
the corresponding consensus cloud mask derived
by the three human observers. Figure 5(c) represents
the cloud mask obtained with the overall best PNN
algorithm, while Fig. 5(d) shows its comparison to
the reference consensus cloud mask. Here, gray,
blue, and yellow refer to correctly classified pixels,
false negative, and false positive cloud detection,
respectively.

Figure 6 shows the I, p, and α patterns in the
red, green, and blue channels of an almost overcast
sky with a cloudiness of 96%, observed at a solar
elevation of 16°. The polarization characteristics of
overcast skies are qualitatively similar to those of
partly cloudy skies (cf. Fig. 4). The main difference
is that the degree of polarization from overcast
skies is strongly reduced in the entire sky-dome
(Fig. 6). Most remarkably, at a given solar elevation,
the α pattern of partly cloudy (Fig. 4) and overcast
(Fig. 6) skies is practically the same as that of
clear skies (see, e.g., the clear-sky figures in [5–12]),
independent of wavelength.

The fraction of erroneously classified pixels
averaged over the 10 randomly chosen test sets is
summarized in Table 3 for the 13 evaluated algo-
rithms. The RBD, HTA, RBR, WD, WDAI, WDSD,
and kNN algorithms had similar average errors

Table 2. Input Parameters Used by Our Four Neural-Network-Based
Cloud Detection Algorithmsa

Input Parameter PNN NNN SINN SpNN

Average I in the red for the whole
image

× ×

Average I in the green for the
whole image

× ×

Average I in the blue for the
whole image

× ×

Variance of I in the red for the
whole image

× ×

Variance of I in the green for the
whole image

× ×

Variance of I in the blue for the
whole image

× ×

Average p in the red for the
whole image

×

Average p in the green for the
whole image

×

Average p in the blue for the
whole image

×

Variance of p in the red for the
whole image

×

Variance of p in the green for the
whole image

×

Variance of p in the blue for the
whole image

×

Solar elevation × × × ×
Average I in the red for the given
pixel

× × ×

Average I in the green for the
given pixel

× × ×

Average I in the blue for the
given pixel

× × ×

Variance of I in the red for the
given pixel

× ×

Variance of I in the green for the
given pixel

× ×

Variance of I in the blue for the
given pixel

× ×

Average p in the red for the given
pixel

× ×

Average p in the green for the
given pixel

× ×

Average p in the blue for the
given pixel

× ×

Variance of p in the red for the
given pixel

×

Variance of p in the green for the
given pixel

×

Variance of p in the blue for the
given pixel

×

Elevation of the given pixel × × × ×
Azimuth distance of sun and the
given pixel

× × × ×

aI: intensity, p: degree of linear polarization. Parameter usage
in the PNN, NNN, SINN, and SpNN neural networks is marked
with ×.
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ranging from 18.57% to 22.58%. The pRG and pDG
algorithms, which are based only on the degree of
polarization, were the least accurate with errors
varying between 29.94% and 42.88%. The neural-
network-based SpNN algorithm, which uses the
degree of polarization, had an error of 23.82% and,
thus, provided no improvement over the non-
neural-network-based methods. The SINN and NNN
neural network algorithms, which use no polariza-
tion data, however, performed better than the non-
neural-network-based algorithms, having errors
between 16.05% and 16.32%. The error of the PNN
algorithm, which uses all possible data (polarization,
global, and nonoptical), was the smallest (15.32%)
among the investigated schemes. The error of WDSD
had the smallest standard deviation of SD � 1.00%,
while pDG and pRG had the largest SD of 2.69% and
2.35%. The other algorithms had an SD ranging be-
tween 1.09% and 1.61%.

The errors of the three human-observer-derived
cloud masks compared to the consensus cloud mask
(i.e., the percentage of pixels for which a given
observer disagreed with the group consensus; see
Materials and Methods) were 3.32%, 3.31%, and
2.74%, averaged over the 50 test images. Note that
90% of all pixels were consistently classified by all
three observers and 93% by any two observers.

The fraction of erroneously classified pixels calcu-
lated separately for each of the 10 random test sets is
given in Table 4. As shown, the neural-network-
based algorithms outperformed the non-neural-
network-based ones not only on average, but also
for each individual test set.

The HTA, NNN, and PNN algorithms use global
parameters that are characteristic of the whole im-
age, while the WDSD, SINN, SpNN, NNN, and PNN
algorithms also use nonoptical parameters such
as solar elevation and relative solar azimuth (see
Table 2). The comparison statistics in Table 3 reveal
that the WDSD algorithm had the smallest error
among the non-neural-network-based algorithms, in-
dicating that nonoptical parameters can improve
cloud detection. Overall, the NNN and PNN algo-
rithms had the smallest errors, the reason for which
is explained in the Discussion section.

4. Discussion

Tables 3 and 4 lack the comparison of cloud detection
accuracies of the investigated algorithms to that of
a human observer. Although there was a qualified
meteorologist on board the Polarstern, he did not
make cloud coverage observations at the points of
time of our measurements. Note, that these human
observations of cloud coverage expressed in octas

Fig. 5. Example cloud detection results obtained using the intensity and polarization patterns in Fig. 4. (a) Color image of the sky. (b) Con-
sensus cloud mask derived by three human observers. (c) Cloud mask obtained with the PNN algorithm. (d) Differences between the
consensus cloudmask and the PNN cloudmask. Gray: correctly classified pixels. Blue: false negative cloud detection. Yellow: false positive
cloud detection.
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(1/8th area of the total sky) have a coarse scale
resolution compared to that of the investigated algo-
rithms. Furthermore, Polarstern was equipped with
numerous weather sensors (LIDAR, radiometers, for

example) performing regular and frequent measure-
ments, but none of these sensors measured cloud
coverage.

The kNN, SINN, SpNN, NNN, and PNN algo-
rithms belong to the family of artificial intelligence
(AI) methods, which are capable of incorporating
otherwise difficult to explore relationships. The non-
AI algorithms (RBD, RBR, HTA, WD, WDAI, WDSD,
pDG, pRG) might reproduce relationships a human
expert can discover by analyzing cloud images, but
they are unable to capture hidden relationships, es-
pecially those related to polarization properties
invisible to the human eye.

However, supervised learning methods are most
effective when trained on a sufficiently large number
of input data. For example, Tables 3 and 4 clearly
show that, although kNN is an AI algorithm, its er-
rors were similar to those of the non-AI algorithms.
This was the consequence of our specific implemen-
tation of kNN using only the three intensities (IR, IG,
IB; i.e., color) as input. The number of kNN input
parameters in our study was limited by the large
memory requirement of storing the algorithm’s inter-
nal parameters. In the tested case, we used an array
of 256 × 256 × 256 color cells, requiring a modest
16 MB of memory at 1 byte per cell. However, the
number of data cells and thus the amount of memory
needed to run the kNN algorithm rapidly increases
with the number n of input parameters as 256n.
For example, if one more parameter were included
in the kNN algorithm (e.g., the red degree of polari-
zation or the blue angle of polarization), the 4 GB of
extra memory required would consume the entire
memory of a typical low-end notebook computer used
in portable full-sky imaging systems (like our cloud
detector).

Fig. 6. Same as Fig. 4 but for an almost overcast sky with a rel-
ative cloudiness of 96%, according to the consensus cloud mask,
observed at a solar elevation angle of 16°.

Table 3. Fractional Error (%) for Each Algorithm of the Erroneously Classified Pixels Averaged over 10 Randomly Chosen Test Setsa

Algorithm
(Detector)

Average
Error (%)

Standard
Deviation (%)

Using

Polarization Data Global Parameters Nonoptical Parameters

RBD 22.58 1.40
WD 21.46 1.45
RBR 21.64 1.41
kNN 19.63 1.14
HTA 20.78 1.61 ×
WDAI 19.80 1.21
WDSD 18.57 1.00 ×
pDG 42.88 2.69 ×
pRG 29.94 2.35 ×
SpNN 23.82 1.15 × ×
SINN 16.32 1.12 ×
NNN 16.05 1.24 × ×
PNN 15.32 1.09 × × ×

aRBD, red-blue difference; WD, whiteness detector; RBR, red-blue ratio; kNN, k-nearest neighbors; HTA, hybrid thresholding
algorithm; WDAI, whiteness detector with average intensity; pDG, degree of polarization difference in the green spectral range;
pRG, degree of polarization ratio in the green spectral range;WDSD, whiteness detector with solar distance; SINN, simple intensity
neural network; SpNN, simple degree of polarization neural network; NNN, nonpolarimetric neural network; PNN, polarimetric
neural network. The 10 sets of 25 test images were randomly chosen from the same pool of 50 images obtained during the ANT-
XXVII/1 trans-Atlantic expedition of the research vessel Polarstern. The usage of polarization information, global parameters, and
nonoptical parameters in the 13 different cloud detection algorithms is marked with ×.
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The pDG, pRG, SpNN, and PNN algorithms use
polarimetric information, while the others only use
photometric information. The HTA, NNN, and
PNN algorithms also use global parameters charac-
teristic of the entire image, whereas the others only
use local parameters characteristic of the investi-
gated pixel or its vicinity. The WDSD, SpNN, SINN,
NNN, and PNN algorithms incorporate nonoptical
parameters as well, while the others only utilize
optical parameters. The NNN and PNN algorithms
produced the smallest errors (see Table 3) because
they are AI-based and use a large number of input
parameters, including nonoptical and global param-
eters. The PNN algorithm even uses polarimetric in-
put parameters, which can explain why it slightly
outperformed the NNN algorithm.

The difference between the performance of the
PNN and NNN algorithms was small and could be
insignificant. Nevertheless, the somewhat better
performance of PNN over NNN is ultimately not sur-
prising because the former uses more information.
This expectation is reflected in the results without
any artificial manipulation of the measurement data
or the evaluation process. Furthermore, we used as
many as 50 cloud scenes for evaluation to reduce the
chance of an overall poorly performing algorithm
being well optimized to a specific set of sky conditions
and, thus, returning unrepresentatively good results.
As NNN and PNN used identical measurements
with the same bluish ghosting artifacts, image qual-
ity cannot explain the better performance of PNN
over NNN.

Admittedly, the limited number of training images
could not guarantee that the training phase space of
the neural network (NN) encompassed all possible
cloud scenarios. However, if a test measurement
were indeed outside the training phase space, this
would weaken the performance of the NN. Thus,
our results do not overestimate the accuracy of NN.

We would like to emphasize that cloud detection
algorithms more complex than the ones presented

in this work might show better performance. While
the algorithms in our study were quite diverse, we
restricted ourselves to only 13 of them. It is possible
that certain combinations of these algorithms could
lead to more precise cloud detection. Examining the
effectiveness of each algorithm as a function of
sun-view geometry and proximity to the horizon,
for example, might tell us how to construct improved
algorithms that combine several methods but with
different weights in different regions of the sky. Our
aim was to evaluate several non-neural-network-
based algorithms that imitate the process of a human
observer detecting clouds in the sky or its measured
polarization patterns. In addition, we implemented
the neural-network-based PNN algorithm, which in-
corporates as much information as possible in a way
that the dependence of the output on the input
parameters is not predetermined.

During our voyage, very high solar elevations with
the sun close to the zenith were rare. Even around
the equator, the sun only approached the zenith at
noon. However, at very high solar elevations, the sky
was usually too cloud-free anyway to test the cloud
detection algorithms. When the sun is near the ze-
nith, the celestial patterns of the degree and angle
of polarization significantly differ from those for
low solar elevations; thus, specially trained cloud de-
tection algorithms might be needed. Because the so-
lar elevation angle varied between 4° and 40° in our
cloudy images, we could not study this special situa-
tion, the investigation of which could be the task of
future research. On the basis of our earlier experi-
ence [5–13,15,21–23], the mask due to the sun occul-
tor and the field objects of the research vessel
Polarstern screened out a larger net sky area than
the celestial regions of clear skies detected errone-
ously as cloudy. Therefore, in the test set we omitted
clear sky pictures, which, however, did not affect the
development of cloud detection algorithms.

The angle of skylight polarization α cannot practi-
cally be used for cloud detection because its celestial

Table 4. Fractional Error (%) of the 13 Different Cloud Detection Algorithms Separately for the 10 Different Randomly Chosen Test Setsa

No. RBD WD RBR kNN HTA WDAI WDSD pDG pRG SpNN SINN NNN PNN

1 23.01 20.37 20.61 19.37 19.35 19.43 18.24 38.77 27.33 22.93 16.04 16.03 15.71
2 23.69 24.01 24.24 21.25 23.05 21.73 20.16 47.94 32.84 25.19 17.98 18.46 15.56
3 21.88 20.06 20.40 18.34 19.06 18.68 17.92 41.51 27.71 22.43 15.21 14.95 13.47
4 24.05 22.76 22.93 20.76 22.56 21.05 19.39 43.64 32.22 24.61 17.89 16.85 16.52
5 20.89 21.85 22.02 19.38 20.94 19.65 18.28 44.20 29.48 23.26 15.77 15.40 15.54
6 24.95 22.36 22.31 21.06 21.94 21.12 19.96 42.14 30.69 25.26 17.51 17.19 16.42
7 22.29 19.39 19.58 18.46 18.39 18.60 17.95 39.95 28.14 22.79 15.70 14.34 15.01
8 21.55 20.30 20.58 18.18 20.19 18.68 17.22 41.88 27.79 23.24 15.84 15.05 14.23
9 20.59 21.11 21.18 19.28 20.08 18.59 17.58 43.09 29.31 23.15 14.79 15.64 14.13
10 22.92 22.35 22.54 20.16 22.19 20.52 18.95 45.73 33.86 25.38 16.46 16.59 16.59
AV 22.58 21.46 21.64 19.63 20.78 19.80 18.57 42.88 29.94 23.82 16.32 16.05 15.32
SD 1.40 1.45 1.41 1.14 1.61 1.21 1.00 2.69 2.35 1.15 1.12 1.24 1.09

aThe average (AV) and standard deviation (SD) of the errors over the 10 test cases shown in the last two rows are from Table 3. RBD,
red-blue difference; WD, whiteness detector; RBR, red-blue ratio; kNN, k-nearest neighbors; HTA, hybrid thresholding algorithm;
WDAI, whiteness detector with average intensity; pDG, degree of polarization difference in the green spectral range; pRG,
degree of polarization ratio in the green spectral range; WDSD, whiteness detector with solar distance; SINN, simple intensity
neural network; SpNN, simple degree of polarization neural network; NNN, nonpolarimetric neural network; PNN, polarimetric
neural network. For each test set as well as for the average, the smallest fractional error of the best algorithm is bolded and italicized.
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pattern is very robust, even under cloudy conditions
[6,8–12,21,23]. In [5], a cloud detection algorithm
was presented, which also takes into consideration
the α of skylight. However, using only changes in α
for cloud detection would yield poor results; thus,
our cloud detection algorithms did not use this
parameter.

The moving platform of the Polarstern had the
drawback in that the sequential measurements with
our rotating-analyzer imaging polarimeter could
lead to motion artifacts caused by the varying tilt
of the vessel during acquisition of the three polariza-
tion pictures. The quality of a few measurements
was, in fact, degraded by the ship’s movement.
However, during selection of the 50 test images, we
paid special attention to avoid measurements with
apparent motion artifacts in the calculated polari-
metric parameters. In theory, these motion artifacts
could be eliminated using three simultaneously
taken polarization images of the cloudy sky [5]. In
practice, however, such an approach would still face
the following nontrivial technical challenges: (1) the
most serious problem is the proper parallel align-
ment of the optical axes of the three cameras, which
would require an extra collocation step; (2) another
difficulty is posed by the slight differences among
the photometric (intensity) responses of the three
sensors even if they are of the same type, requiring
cross calibration. One could also use the ship’s mo-
tion and attitude data to correct the currently avail-
able measurements by computing an offset position
for each pixel and sequential image. However, we
deemed this approach too involved which would have
needed an accurate and complex temporal synchro-
nization among ship motion, ship attitude, and ac-
quisition time of the polarization images. Instead,
we applied the simpler method of using a sequential
one-camera rotating-analyzer polarimeter but with
measurements affected by motion artifacts excluded
from analysis.

5. Conclusions

We found that neural-network-based algorithms per-
form the best among the investigated schemes and
also that global image properties (e.g., the mean
and variance of intensity), nonoptical information
(e.g., sun-view geometry), and polarimetric informa-
tion (especially the degree of polarization) can im-
prove the accuracy of cloud detection. However, as
evidenced by the rather small increase in accuracy
between the NNN and PNN detectors, the addition
of polarimetric information only marginally im-
proves cloud detection. Nevertheless, it is important
to emphasize that polarization information can be
used to derive other quantities such as cloud base
height or aerosol concentration [30], which would
be impossible to measure by a photometric sky
imager alone. Polarization might also be helpful in
classifying cloud types, e.g., distinguishing ice clouds
from water clouds, or even obtaining information on
ice cloud microphysics (particle size and shape).
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