While the human eye can practically cope only with two aspects of light, brightness and colour, for many animals polarization is a further source of visual information. This fascinating phenomenon of polarization sensitivity is comprehensively treated by Horvath and Varju. Starting with a short introduction into imaging polarimetry – an efficient technique for measuring light polarization - various polarization patterns occurring in nature are presented. Among them are the polarizational characteristics of water surfaces, mirages and the underwater light field as well as the celestial polarization patterns affected by the illumination conditions of sunrise, sunset, clear or cloudy skies, moonshine and total solar eclipses.

The major part of the book is dedicated to the question: How can animals perceive and use the natural and artificial polarization patterns? Following a detailed compendium of the physiological basis of polarization sensitivity, several case studies of animal behaviour determined or influenced by polarization are presented. It is shown how arial, terrestrial and aquatic animals use the celestial and under-water polarization for orientation, e.g. how polarized light serves honeybees or ants as a compass. Further, it is explained how man-made objects affecting the natural optical environment may disorientate animals. For instances, as in the case where oil or glass surfaces, asphalt roads, or plastic sheets used in agriculture can be more attractive for water-seeking polarotactic insects than the water surface, and where mayflies lay their egg on dry asphalt roads or cars.

http://www.springer.de

Horváth · Varjú

Polarized Light in Animal Vision

Gábor Horváth · Dezsö Varjú Polarized Light in Animal Vision

Polarization Patterns in Nature

Springer

Springer

Berlin Heidelberg New York Hong Kong London Milan Paris Tokyo

Polarized Light in Animal Vision

Polarization Pattern in Nature

With 127 Figures, 16 Plates in Colour

Dr. GÁBOR HORVÁTH Department of Biological Physics Eötvös University Pázmány sétany 1 117 Budapest Hungary

e-mail: gh@arago.elte.hu

Prof. Dr. DEZSÖ VARJÚ Lehrstuhl Kognitive Neurowissenschaften Universität Tübingen Auf der Morgenstelle 28 72076 Tübingen Germany

e-mail: deszoe.varju@uni-tuebingen.de

Cover Photos: **Background:** Pattern of the angle of linear polarization α of skylight and earthlight displayed on the surface of a *sphere* and measured by 180° field-of-view imaging polarimetry in the blue part (450 nm) of the spectrum from a hot air balloon at an altitude of 3500 m. The colour code of α is given in \rightarrow colour Fig. 4.5. More details can be found in Chap. 4.2. Foreground: Collection of some representative polarization-sensitive animal species (dragonfly *Anax imperator*, house cricket *Acheta domesticus*, red-spotted newt *Notophthalmus viridescens*, spider *Pardosa lugubris* and rainbow trout *Oncorhynchus mykiss*), the polarization sensitivity of which is treated in Part III of this volume.

All figures in this volume were composed by Dr. Gábor Horváth

ISBN 3-540-40457-0 Springer-Verlag Berlin Heidelberg New York

Library of Congress Cataloging-in-Publication Data

Horváth, Gábor, 1963Polarized light in animal vision : polarization patterns in nature / Gábor Horváth, Dezsö Varjú.
p. cm.
Includes bibliographical references (p.).
ISBN 3-540-40457-0 (alk. paper)
1. Vision. 2. Polarization (Light)-Physiological aspects. 3. Animal orientation. 4.
Physiology, Comparative. I. Varjú, Dezsö, 1932- II. Title

QP481.H65 2003 152.14--dc22

2003054309

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permissions for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York a company of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2004

Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Production and typesetting: Friedmut Kröner, 69115 Heidelberg, Germany Cover design: design & production GmbH, Heidelberg

31/3150 YK - 5 4 3 2 1 0 - Printed on acid free paper

Preface

The subject of this volume is two-fold. First, it gathers typical polarization patterns occurring in nature. Second, it surveys the polarization-sensitive animals, the physiological mechanisms and biological functions of polarization sensitivity as well as the polarization-guided behaviour in animals. The monograph is prepared for biologists, physicists and meteorologists, especially for experts of atmospheric optics and animal vision, who wish to understand and reveal the message hidden in polarization patterns of the optical environment not directly accessible to the human visual system, but measurable by polarimetry and perceived by many animals. Our volume is an attempt to build a bridge between these two physical and biological fields.

In Part I we introduce the reader to the elements of imaging polarimetry. This technique can be efficiently used, e.g. in atmospheric optics, remote sensing and biology.

In Part II we deal with typical polarization patterns of the natural optical environment. Sunrise/sunset, clear skies, cloudy skies, moonshine and total solar eclipses all mean quite different illumination conditions, which also affect the spatial distribution and strength of celestial polarization. We present the polarization patterns of the sky and its unpolarized (neutral) points under sunlit, moonlit, clear, cloudy and eclipsed conditions as a function of solar elevation. The polarization pattern of a rainbow is also shown. That part of the spectrum is derived in which perception of skylight polarization is optimal under partly cloudy skies. The reader becomes acquainted with the polarization of the solar corona and can follow how the polarization pattern of the sky changed during a total solar eclipse. We also treat the polarizational characteristics of water surfaces, mirages and the underwater light field. We explain why water insects are not attracted by mirages. Finally, the occurrence of circularly polarized light in nature is reviewed.

Part III is devoted to the description of the visual and behavioural mechanisms indicating how animals perceive and use natural polarization patterns. Surveying the literature, a detailed compendium of the sensory basis of polarization sensitivity in animals and humans is given. We also present several case studies of known behavioural patterns determined or influenced by

polarization sensitivity. It is shown, for instance, how aerial, terrestrial and aquatic animals use celestial and underwater polarization for orientation. The role of the reflection-polarization pattern of water surfaces in water detection by insects is discussed. We illustrate how reflection-polarization patterns of anthropogeneous origin can deceive water-seeking polarotactic insects. The natural environment is more or less affected by human civilization and is overwhelmed by man-made objects, such as crude or waste oil surfaces, asphalt roads, glass surfaces, or plastic sheets used in agriculture, for instance. We explain why these surfaces are more attractive to water-seeking polarotactic insects than the water surface itself. We explain why mayflies or dragonflies lay their eggs en masse on dry asphalt roads or car-bodies. We show how dangerous open-air oil reservoirs can be for polarotactic insects and why oil surfaces function as insect traps. Some other possible biological functions of polarization sensitivity, such as contrast enhancement, intra- or interspecific visual communication and camouflage breaking are also discussed. Due to the interference of polarization and colour sensitivity, polarization-induced false colours could be perceived by polarization- and colour-sensitive visual systems. We calculate and visualize these false colours by means of a computer model of butterfly retinae, and investigate their chromatic diversity. Finally, a common methodological error is discussed, which is frequently committed in experiments studying animal polarization sensitivity.

Our monograph is in close connection with the treatise about planets, stars and nebulae studied with photopolarimetry edited by T. Gehrels (1974), the volume on polarized light in nature by Günther P. Können (1985), and the monograph of Kinsell L. Coulson (1988) on polarization and intensity of light in the atmosphere. When these volumes were published, the technique of imaging polarimetry was not yet available, thus the polarizational characteristics of natural optical environments were presented in the form of graphs or pairs of photographs taken through linear polarizers with two orthogonal directions of their transmission axes.

Due to imaging polarimetry developed in the last decade, the polarization patterns are visualized in our volume as high resolution colour/grey-coded maps of the degree and angle of linear polarization. All colour figures are placed at the end of the book. They are cited in the text as e.g. \rightarrow colour Fig. 1.1.

Considering various kinds of point-source non-imaging polarimeters, including radar polarimetry, the reader is referred to the monographs of Egan (1985), Kong (1990), Azzam and Bashara (1992), Boerner *et al.* (1992) and Collett (1994), for instance. All relevant details of the physics of light polarization can be found in the text-books of Shurcliff (1962), Clarke and Grainger (1971), Kliger *et al.* (1990), Born and Wolf (1999), for example. The early knowledge about the sensory basis of animal polarization sensitivity and its

Preface

biological functions was reviewed by Karl von Frisch (1967) and Talbot H. Waterman (1981). Rüdiger Wehner (1976, 1982, 1983, 1984, 1989, 1994, 2001) also wrote several important reviews and essays about this topic, especially on honeybees and desert ants. In addition to relying on our own contributions to the field, we have liberally quoted from the numerous publications of many other investigators with appropriate references given in each case. While the bibliography at the end of our book is not complete, it is fairly representative of the field.

June 2003, Budapest Tübingen Gábor Horváth Dezsö Varjú

Acknowledgements

Financial support for the authors to write the book was given by the German Alexander von Humboldt Fundation, providing Gábor Horváth with a Humboldt research fellowship for 14 months at the Department of Cognitive Neuroscience of the Eberhard Karls University in Tübingen, thus making close cooperation with Dezs? Varjú possible. Many thanks are due to Professor Hanspeter Mallot, head of the department, who provided us with all the necessary equipment and materials. We appreciate the secretarial and technical assistance of Mrs. Annemarie Kehrer, Ursula Henigne and Dr. Heinz Bendele. The three-year István Széchenyi scholarship from the Hungarian Ministry of Education to G. Horváth is also acknowledged. G. Horváth received further financial support from the Hungarian Science Foundation (OTKA F-014923, T-020931, F-025826).

We are very grateful to the following scientists for reviewing different chapters (numbers in brackets) of the monograph: Kenneth Able (31), Marie Dacke (24), Michael Freake (29, 30), Uwe Homberg (17.6, 17.7), Almut Kelber (17.5), Kuno Kirschfeld (17.2), Thomas Labhart (17.4), Inigo Novales Flamarique and Ferenc Hárosi (28), Samuel Rossel (17.1), Rudolf Schwind (18), Nadav Shashar (26), Rüdiger Wehner (17.3) and Hansruedi Wildermuth (18.6). Apart from these scientists, S. Akesson, E.J.H. Bechara, H.I. Browman, M.A.J.M. Coemans, T. Cronin, R.B. Forward, W. Haupt, C.W. Hawryshyn, G.W. Kattawar, G.P. Können, M.F. Land, R.L. Lee, D.K. Lynch, E.P. Meyer, V.B. Meyer-Rochow, F.R. Moore, U. Munro, D.E. Nilsson, J.F.W. Nuboer, A. Ugolini, K.J. Voss, J.A. Waldvogel, T.H. Waterman, W. Wiltschko and J. Zeil provided us with important literature and information, which is acknowledged.

We are also grateful to the following students and colleagues for their continuous help during the polarimetric investigations in the field and the evaluation and visualization of the polarization patterns: András Barta, Balázs Bernáth, Ferenc Mizera, Gergely Molnár, Bence Suhai, Gábor Szedenics, Drs. Sándor Andrikovics, József Gál, Ottó Haiman, György Kriska and István Pomozi.

The polarimetric measurements in Finland, in the Tunisian desert and in Switzerland were possible due to fruitful cooperation with Professors Viktor Benno Meyer-Rochow, Rüdiger Wehner and Hansruedi Wildermuth. Many thanks for their financial support, valuable help and encouragement.

Mária Horváth-Fischer and János Horváth rendered indispensable help and support during the field experiments in the Hungarian Great Plain (Kiskunhalas, Kecel and Kunfehértó).

All figures adopted from the cited sources are taken over in this volume with the permission of the publishers.

Many thanks to our wives, Heide Varjú and Zsuzsanna Horváth-Tatár who ensured the ideal and quiet familiar atmosphere, which was one of the most important prerequisites of our work. We dedicate this monograph to them.

Gábor Horváth is very grateful to Professor Rudolf Schwind, who introduced him into the wonderful world of polarized light and its role in animal vision during his one-year postdoctoral fellowship at the Institute of Zoology of the University of Regensburg in 1991–1992.

Last, but not least, we are also very much indebted to Springer-Verlag, especially to Drs. Dieter Czeschlik and Jutta Lindenborn. Dr. Czeschlik agreed without hesitation to publish the book, and from Dr. Lindenborn we received valuable advice while preparing the manuscript.

About the Authors

Gábor Horváth was born in 1963 in Kiskunhalas, Hungary. In 1987 he received his diploma in physics from the Loránd Eötvös University in Budapest. Then he was a research assistant at the Department of Low Temperature Physics of the same university, where he investigated electrical percolation processes in granular superconductors. In 1989 he received a doctoral fellowship in the Biophysics Group of the Central Research Institute for Physics of the Hungarian Academy of Sciences (Budapest), where he developed a mathematical description and computer modelling of retinal cometlike afterimages. He obtained his Ph.D. at the Eötvös University in 1991. His thesis in physiological optics is a computational study of the visual system

and optical environment of certain animals. In 1991 he was offered a oneyear postdoctoral position in the Institute for Zoology of the University of Regensburg (Germany), where together with Professor Rudolf Schwind he started to study the polarization patterns of skylight reflected from water surfaces. Then he was a postdoctoral fellow at the Department for Biological Cybernetics of the University of Tübingen (Germany) for 1 year. Here, he investigated experimentally the polarization-sensitive optomotor reaction in water insects and natural polarization patterns together with Professor Dezs? Varjú. In 1993 he finished his postdoctoral dissertation in computational visual optics to obtain the degree "Candidate for Biophysical Science" awarded by the Hungarian Academy of Sciences. For this treatise he won the first International Dennis Gabor Award. In 1993 together with Dezs? Varjú, he won also the biomathematical Richard Bellman Prize from the journal of Mathematical Biosciences. He also received several best paper awards of different Hungarian popular-scientific journals. He won the first prize of the Hungarian Biophysical Society three times. In 1994 he received the Pro Schola award from the Áron Szilády secondary school, where he studied earlier. Presently he is an associate professor at the Department of Biological Physics of the Eötvös University and leader of the Biooptics Laboratory. He received the Hungarian István Széchenyi (4 years), Loránd Eötvös (9 months), János Bolyai (3 years), Zoltán Magyary (1 year) scholarships and the German Alexander von Humboldt fellowship (14 months). His main research interest is studying experimentally as well as theoretically the optics of animal eyes, polarization sensitivity of animals and the polarization characteristics of the optical environment. He developed different kinds of imaging polarimetry, by which he records and visualizes the polarization patterns in nature. He conducted several expeditions and polarimetric measuring campaigns in Hungary, in the Tunisian desert as well as in the Finnish Lapland. His wife, Zsuzsanna Tatár-Horváth teaches mathematics and physics in a secondary school in Budapest. His sons, Loránd and Lénárd were born in 1991 and 1999, respectively.

Dezsö Varjú was born in 1932 in Hungary. In 1956 he received his diploma in physics from the Loránd Eötvös University in Budapest. In the same year he left Hungary and joined as graduate student a group of biophysicists headed by the late Werner Reichardt at a Research Institute of the Max Planck Society in Göttingen, Germany. There he was involved in the investigation of movement perception in insects and of phototropic and light growth responses of the slime mold *Phycomyces*, on both experimental and theoretical levels. In 1958 he received his Ph.D. from the Georg August University in Göttingen. In the same year the group moved to the Research Institute for Biology of the Max Planck Society in Tübingen. In 1959 he obtained a one-year postdoctoral position at the California Institute of Technology in Pasadena with Max Delbrück, where he continued his investigations into the light and gravity responses of Phycomyces. Returning to Tübingen, he started to study nonlinear signal transformation and binocular interactions in the human pupillomotor pathway at the above-mentioned institution. Afterwards he examined frog retinal ganglion cells. Later, he frequently changed the objects of his investigations, because he was looking for biological problems, the mathematical modelling of which promised to be fruitful, and each new object gave him the opportunity to become acquainted with a new chapter in biology. In 1968 the Eberhard Karls University in Tübingen offered him a Chair for Zoology, which was soon renamed the Department for Biological Cybernetics. The general field of his research during the last 30 years was invertebrate behavioural neurobiology with a special interest for localization and orientation. In

1983 he organized the triannual conference of the German Association for Cybernetics on these topics. His activities included both experimental investigations and mathematical modelling. His experimental animals were the beetle *Tenebrio*, the stick insect *Carassius*, the crabs *Carcinus*, *Leptograpsus*, *Pachygrapsus*, the crayfish *Cherax*, the bugs *Triatoma*, *Gerris*, *Notonecta* and the hawk moth *Macroglossum*. From 1969 until 2001 he was member of the Editorial Board of Biological Cybernetics and since 1993 of the Advisory Board of the Journal of Comparative Physiology A. He spent his sabbaticals in the laboratories of friends in Canberra and Sydney (1980/81, 1986/87, 1991/92). In Tübingen he conducted research with guest scientists from Argentina, Canada, USA, and most frequently with Gábor Horváth from Hungary. Since October 1997 he is Professor Emeritus of the University of Tübingen.

Contents

Part I: Imaging Polarimetry

1	Polarimetry: From Point-Source to Imaging Polarimeters .	3
1.1	Qualitative Demonstration of Linear Polarization	
	in the Optical Environment	3
1.2	Elements of the Stokes and Mueller Formalism	
	of Polarization	8
1.3	Polarimetry of Circularly Unpolarized Light by Means	
	of Intensity Detectors	9
1.4	Point-Source, Scanning and Imaging Polarimetry	10
1.5	Sequential and Simultaneous Polarimetry	10
1.6	Colour Coding and Visualization of Polarization Patterns .	11
1.7	Field of View of Imaging Polarimetry	11
1.8	Polarizational Cameras	12

Part II: Polarization Patterns in Nature

2	Space-Borne Measurement of Earthlight Polarization	15
3	Skylight Polarization	18
3.1	The Importance of Skylight Polarization	
	in Atmospheric Science	18
3.2	Celestial Polarization Measured by Video Polarimetry	
	in the Tunisian Desert in the UV and Green Spectral Ranges	19

4 4.1	Principal Neutral Points of Atmospheric Polarization Video Polarimetry of the Arago Neutral Point	23
1.1	of Skylight Polarization	25
4.2	First Observation of the Fourth Principal Neutral Point	27
5	24-Hour Change of the Polarization Pattern of the Summer Sky North of the Arctic Circle	32
6	Polarization Patterns of Cloudy Skies	
(1	and Animal Orientation	36
6.1.	Polarization of Cloudy Skies	36
0.2.	of Polarization Pattern Underneath Clouds	37
63	Proportion of the Celestial Polarization Pattern Useful	57
0.5.	for Compass Orientation Exemplified with Crickets	38
		20
7	Ground-Based Full-Sky Imaging Polarimetric	
	Cloud Detection	41
8	Polarization Pattern of the Moonlit Clear Night Sky at Full Moon: Comparison of Moonlit and Sunlit Skies	47
9	Imaging Polarimetry of the Rainbow	51
10	Which Part of the Spectrum is Optimal	
	for Perception of Skylight Polarization?	53
10.1	A Common Misbelief Concerning the Dependence of	
	the Degree of Skylight Polarization on Wavelength	53
10.2	Why do Many Insects Perceive Skylight	
	Polarization in the UV?	56
10.2.1	Is the Celestial Polarization Pattern More Stable in the UV?	56
10.2.2	Was the UV Component of Skylight Stronger in the Past?	57
10.2.3	Relatively Large Proportion of UV Radiation in Skylight?	59
10.2.4	Mistaking Skylight for Ground-Reflected Light?	60
10.2.5	Confusion of Motion and Form for Celestial Polarization? .	60
10.2.6	Were UV Receptors Originally Skylight Detectors and Only	
100 -	Later Incorporated Into the E-vector Detecting System?	61
10.2.7	Maximizing "Signal-to-Noise Ratios" by UV	
10.0.0	Photopigments Under Low Degrees of Skylight Polarization?	61
10.2.8	In the Spectral and Intensity Domain the Celestial	
	Band of Maximum Polarization is Less Pronounced	(2)
	In the UV than in the Blue \dots \dots \dots \dots \dots \dots	62

10.2.9	The Proportion of Celestial Polarization Pattern Useful for Animal Orientation is Higher in the Blue than	
	in the Green or Red	62
10.2.10	Perception of Skylight in the UV Maximizes the Extent of the Celestial Polarization Pattern Useful	
	for Compass Orientation Under Cloudy Skies	64
10.3	Resolution of the UV-Sky-Pol Paradox	68
10.4	E-Vector Detection in the UV also Maximizes the Proportion of the Celestial Polarization Pattern	
	Useful for Orientation Under Canopies	69
10.5	Analogy Between Perception of Skylight Polarization and Polarotactic Water Detection Considering	
	the Optimal Spectral Range	71
10.6	Analogy of the UV-Sky-Pol Paradox in	, 1
	the Polarization Sensitivity of Aquatic Animals	71
10.7	Why do Crickets Perceive Skylight Polarization in the Blue?	72
10.8	Concluding Remark	73
11	Polarization of the Sky and the Solar Corona	
	During Total Solar Eclipses	74
11.1	Structure of the Celestial Polarization Pattern and	
	its Temporal Change During the Eclipse of 11 August 1999 .	75
11.2	Origin of the E-vector Pattern During Totality	78
11.3	Neutral Points of Skylight Polarization Observed	80
11 /	Origin of the Zenith Neutral Point During Totality	83
11.4	Origin of Other Neutral Doints at Totality	03
11.5	Imaging Delarimetry of the Solar Corona	0J 05
11.0		65
12	Reflection-Polarization Pattern of the Flat Water Surface	
	Measured by 180° Field-of-View Imaging Polarimetry	88
13	Polarization Pattern of a Fata Morgana:	
	Why Aquatic Insects are not Attracted by Mirages?	92
14	Polarizational Characteristics of the Underwater World	95
15	Circularly Polarized Light in Nature	100
15.1	Circulary/Elliptically Polarized Light Induced	
	by Total Reflection from the Water-Air Interface	100
15.2	Circulary Polarized Light Reflected from	
	the Exoskeleton of Certain Arthropods	101
15.3	Circulary Polarized Light Emitted by Firefly Larvae	102

Part III: Polarized Light in Animal Vision

16	From Polarization Sensitivity to Polarization Vision	107
16.1	Forerunners of the Study of Animal Polarization Sensitivity	107
16.2	Polarization Sensitivity, Polarization Vision	
	and Analysis of Polarization Patterns	108
16.3	Functional Similarities Between Polarization	
	Vision and Colour Vision	111
16.4	How can Skylight Polarization be Used for Orientation?	112
16.5	Possible Functions of Polarization Sensitivity	115
16.6	How might Polarization Sensitivity Have Evolved?	116
16.7	Polarization Sensitivity of Rhabdomeric	
	Invertebrate Photoreceptors	117
16.7.1	Hypothetical Polarizing Ability of the Dioptric Apparatus .	118
16.7.2	Rhabdomeric Polarization Sensitivity	118
16.7.3	Origin of High Polarization Sensitivity	121
16.7.4	Origin of Low Polarization Sensitivity	122
16.7.5	Rhabdomeric Twist and Misalignment	
	and their Functional Significance	123
16.7.6	Ontogenetic Development of Photoreceptor Twist	
	Outside the Dorsal Rim Area of the Insect Eye	124
16.7.7	Characteristics of the Anatomically and	
	Physiologically Specialized Polarization-Sensitive	
	Dorsal Rim Area in Insect Eyes	125
16.7.8	Polarization-Sensitive Interneurons in Invertebrates	128
16.8	Polarization Sensitivity of Vertebrate Photoreceptors	128
16.9	Polarization Sensitivity in Plants	130
17	Polarization Sensitivity in Terrestrial Insects	131
17.1	Honeybees	131
17.2	Flies	143
17.2.1	Muscid Flies	143
17.2.2	Rhabdomeric Twist in the Retina of Flies	143
17.2.3	Musca domestica, Calliphora erythrocephala,	
	Calliphora stygia and Phaenicia sericata	144
17.2.4	Drosophila melanogaster	146
17.3	Ants	147
17.4	Crickets	156
17.4.1	Acheta domesticus	156
17.4.2	Gryllotalpa gryllotalpa	156
17.4.3	Gryllus bimaculatus	157
17.4.4	Gryllus campestris	160
17.5	Lepidoptera: Butterflies and Moths	165

17.5.1	Papilio xuthus	166
17.3.2	by Papilio xuthus and Papilio aegeus	166
17.5.3	Polarized Light Reflected from Butterfly Wings	100
	as a Possible Mating Signal in <i>Heliconius cydno chioneus</i>	169
17.6		169
17.7	Cockroaches	172
17.8	Scarab Beetles	173
17.9	Response of Night-Flying Insects to Linearly Polarized Light	176
18	Polarization Sensitivity in Insects Associated with Water	178
18.1	Velia caprai	180
18.2	Corixa punctata	180
18.3	Non-Biting Midges (Chironomidae)	180
18.4	Waterstrider <i>Gerris lacustris</i>	181
18.5	Backswimmer Notonecta glauca	183
18.6	Dragonflies Odonata	188
18.7	Dolichopodids	191
18.8	Mayflies Ephemeroptera	192
18.	Other Polarotactic Water Insects	193
18.10	Insects Living on Moist Substrata or Dung	195
18.11	Mosquitoes	197
19	Multiple-Choice Experiments on Dragonfly Polarotaxis	199
20	How can Dragonflies Discern Bright and Dark Waters from a Distance? The Degree of Linear Polarization	
	of Reflected Light as a Possible Cue for Dragonfly	
	Habitat Selection	206
21	Oil Reservoirs and Plastic Sheets as Polarizing Insect Traps	215
21.1	Oil Lakes in the Desert of Kuwait as Massive Insect Traps	215
21.2	The Waste Oil Reservoir in Budapest as a	
	Disastrous Insect Trap for Half a Century	219
21.2.1	Surface Characteristics of Waste Oil Reservoirs	220
21.2.2	Insects Trapped by the Waste Oil	221
21.2.3	Behaviour of Dragonflies Above Oil Surfaces	222
21.3	Dual-Choice Field Experiments Using Huge Plastic Sheets .	223
21.4	The Possible Large-Scale Hazard of	
	"Shiny Black Anthropogenic Products" for Aquatic Insects .	227

22	Why do Mayflies Lay Eggs on Dry Asphalt Roads? Water-Imitating Horizontally Polarized Light Reflected	220
22.1	from Asphalt Attracts Ephemeroptera	229
22.1	Swarming Behaviour of Mayfiles above Asphalt Roads	231
22.2	Multiple-Choice Experiments with Swarming Mayilies	232
22.3	Reflection-Polarizational Characteristics	224
22.4	of the Swarming Sites of Mayines	234
22.4	Comparison of the Attractiveness of Aerholt Doeds	230
22.5	and Water Surfaces to Mayflies	239
23	Reflection-Polarizational Characteristics of Car-Bodies: Why are Water-Seeking Insects Attracted	241
		241
24	Polarization Sensitivity in Spiders and Scorpions	243
24.1	Spiders	243
24.2	Scorpions	246
25	Polarization Sensitivity in Crustaceans	247
25.	Mangrove Crab Goniopsis cruentata	249
25.2	Fiddler Crabs	249
25.3	Copepod Cyclops vernalis	250
25.4	Larvae of the Crab Rhithropanopeus harrisi	251
25.5	Larvae of the Mud Crab Panopeus herbstii	252
25.6	Grapsid Crab Leptograpsus variegatus	253
25.7	Crayfish	253
25.8	Grass Shrimp Palaemonetes vulgaris	255
25.9	Crab Dotilla wichmanni	257
25.10	Water Flea Daphnia	259
25.11	Mantis Shrimps	263
26	Polarization Sensitivity in Cephalopods and Marine Snails	267
26.1	Cephalopods	267
26.1.1	Octopuses	267
26.1.2	Squids	269
26.1.3	European Cuttlefish Sepia officinalis	272
26.2	Marine Snails	274
27	Polarization-Sensitive Optomotor Reaction in Invertebrates	276
27.1	Crabs	276
27.2	Honeybees	277
27.3	Flies	277

27.4	Rose Chafers	278
27.5	Optomotor Reaction to Over- and Underwater	
	Brightness and Polarization Patterns	
	in the Waterstrider <i>Gerris lacustris</i>	278
27.6	Optomotor Response to Over- and Underwater	
	Brightness and Polarization Patterns	
	in the Backswimmer <i>Notonecta glauca</i>	287
28	Polarization Sensitivity in Fish	293
28.1	Fish in which Polarization-Sensitivity was Proposed	294
28.1.1	Sockeye Salmon Oncorhynchus nerka	294
28.1.2	Tropical Halfbeaks Zenarchopterus dispar	
	and Zenarchopterus buffoni	295
28.1.3	Halfbeak Fish Dermogenys pusilus	296
28.1.4	Goldfish Carassius auratus	297
28.1.5	African Cichlid Pseudotropheus macrophthalmus	299
28.1.6	Anchovies Engraulis mordax and Anchoa mitchilli	300
28.1.7	Rainbow Trout Oncorhyncus mykiss	301
28.1.8	Juvenile Salmonid Fish Oncorhynchus mykiss,	
	Oncorhynchus, Oncorhynchus nerka	
	and Salvelinus fontinalis	306
28.2	Fish with Debated Polarization Sensitivity and Fish	
	in which Polarization-Insensitivity was Proposed	306
28.2.1	Green Sunfish Lepomis cyanellus	306
28.2.2	Common White Sucker Catostomus commersoni	308
28.2.3	Pacific Herring Clupea harengus pallasi	308
28.3	Possible Biophysical Basis of Fish Polarization Sensitivity .	309
28.3.1	Axially Oriented Membrane Disks in the Photoreceptor	
	Outer Segments as the Basis for Polarization Sensitivity	
	in Anchovies	309
28.3.2	Embryonic Fissures in Fish Eyes and their Possible	
	Role in the Detection of Polarization	311
28.3.3	Paired Cones as a Possible Basis for Polarization	
	Sensitivity in Fish	312
28.3.3.1	Orthogonal Double Cones with Graded Index	
	of Refraction as a Possible Basis for Polarization	
	Sensitivity in the Green Sunfish <i>Lepomis cyanellus</i>	312
28.3.3.2	Proposed Basis for Polarization Sensitivity in Rainbow	
	Trout due to Internal Reflection from the Membranous	
	Partitions of Double Cones	314
29	Polarization Sensitivity in Amphibians	317
29.1	Tiger Salamander Ambystoma tigrinum	318
29.2	Red-Spotted Newt Notophthalmus viridescens	320
	-	

29.3	Larval Bullfrog <i>Rana catesbeiana</i>	321
29.4	Proposed Mechanisms of Detection	277
		322
30	Polarization Sensitivity in Reptiles	324
30.1	Celestial Orientation in Reptiles	
	and the Polarization-Sensitive Parietal Eye of Lizards	324
30.2	Desert Lizard Uma notata	325
30.3	Sleepy Lizard <i>Tiliqua rugosa</i>	326
31	Polarization Sensitivity in Birds	328
31.1	Crepuscularly and Nocturnally Migrating Birds	330
31.1.1	White-Throated Sparrow Zonotrichia albicollis	
	and American Tree row <i>Spizella arborea</i>	330
31.1.2	Northern Waterthrush Seiurus noveboracensis	
	and Kentucky Warbler Oporornis formosus	331
31.1.3	Yellow-Rumped Warbler <i>Dendroica coronata</i>	332
31.1.4	Blackcap Sylvia atricapilla	334
31.1.5	Savannah Sparrow Passerculus sandwichensis	335
31.2	Day-Migrating Birds	340
31.3	Birds which Might be Polarization Insensitive or not Use	
	Skylight Polarization in their Migratory Orientation	341
31.3.1	Debated Polarization Sensitivity in the Homing	
	Pigeon Columba livia	342
31.3.1.1	The Position of the Sun Hidden by Clouds Could	
	also be Determined on the Basis of the Colour Gradients	
	of Skylight Under Partly Cloudy Conditions	348
31.3.2	European robin Erithacus rubecula	349
31.3.3	Pied Flycatcher Ficedula hypoleuca	350
31.4	Proposed Mechanisms of Avian Polarization Sensitivity	351
31.4.1	Is the Foveal Depression in the Avian Retina Responsible	
	for Polarization Sensitivity?	351
31.4.2	A Model of Polarization Detection	
	in the Avian Retina with Oil Droplets	353
32	Human Polarization Sensitivity	355
32.1	Haidinger Brushes	355
32.2	Boehm Brushes	361
32.3	Shurcliff Brushes	361
33	Polarization-Induced False Colours	362
33.1	Polarization-Dependent Colour Sensitivity	
	and Colour-Dependent Polarization Sensitivity	362

XXII

33.2	Polarizational False Colours Perceived by <i>Papilio</i> Butterflies	364
33.2.1	Computation of the Spectral Loci of Colours Perceived	
	by a Polarization- and Colour-Sensitive Retina	364
33.2.2	Polarization-Induced False Colours Perceived	
	by a Weakly Polarization-Sensitive Retina	369
33.2.3	Reflection-Polarizational Characteristics of Plant Surfaces .	374
33.2.4	Do Polarization-Induced False Colours Influence the Weakly	
	Polarization-Sensitive Colour Vision of <i>Papilio</i> Butterflies	
	Under Natural Conditions?	376
33.3	Polarizational False Colours Perceived	
	by a Highly Polarization-Sensitive Retina Rotating	
	in Front of Flowers and Leaves	377
33.4	Camouflage Breaking via Polarization-Induced	
	False Colours and Reflection Polarization	378
33.5	Is Colour Perception or Polarization Sensitivity	
	the More Ancient?	379
34	A Common Methodological Error:	
	Intensity Patterns Induced by Selective Reflection	
	of Linearly Polarized Light from Black Surfaces	381
Rerences		385
Subject In	ndex	417
Colour I	Instructions	
Colour II	103114110113	

springeronline.com Springer-Verlag Berlin Heidelberg New York

Zoology

Polarized Light in Animal Vision Polarization Patterns in Nature Horváth, Gábor, Varjú, Dezsö 2004, XXIV, 447 p. 111 illus. and 16 color plates, Hardcover ISBN: 3-540-40457-0

Due: November 13, 2003

179,95 €

About this book

While the human eye can practically cope only with two aspects of light, brightness and colour, many animals use polarization as a further source of visual information. The text starts with an introduction into imaging polarimetry, an efficient technique for measuring light polarization, and moves onto a description of the various polarization patterns occurring in nature, such as celestial polarization. The major part of the book is dedicated to the fascinating question: How do animals use polarization patterns? Following a compendium of the physiology of polarization sensitivity, several case studies are presented, such as honeybees or ants using polarized light as a compass or aquatic animals orientating by the underwater polarization. Further, it is explained how man-made objects affecting the natural optical environment may disorientate animals. For instance, as in the case where oil or glass surfaces can be more attractive for water-seeking polarotactic insects than the water surface.

Written for:

Scientists, graduate and undergraduate students

Keywords:

- polarization
- vision
- animals orientation
- optical environment
- visual information
- imaging polarimetry