Számos természettudományos végzettségű szakembert (például orvost, kémikust, biológust, csillagászt, fizikust, geológot, meteorológot, mérnököket, matematikust) a munkássága részére az is érdeki, hogy a képző- és filmművészetekben vagy a bölcsészeti alko tásokban (regényekben, versekben) mennyire helyesen vagy helytelenül jelennek meg a természettudományos ismeretek. Itt csak néhány példát említünk:

- Herman Ottó (1835—1914) polihisztor természettukata tó tanulmányait írt arról, hogy Arany János, Tompa Mihály és Petőfi Sándor verseiben a különböző madár fajok énekét helyesen vagy helytelenül írják-e le [1].

- Krauss elméleti fizikus a *The Physics of Star Trek* című monográfiájában a *Star Trek* tudományos fantasztikus filmsorozat fizikai és csillagászati vonatkozása it elemezte és kritizálta, hogy jelen tudásunk szerint mi igaz és mi lehetetlen a filmsorozatban szereplő fizikai, csillagászati jelenségek közül [2].

- Matematikusok gyakran írnak arról, hogy a hétköznapi életben mennyi matematikai tévhít, felreértés fordul elő ami a józsa paraszi és és az egzakt matematikai ismeretek között feszülő paradoxonokra vezet [3].

Lee és Fraser amerikai légköroptikusok a szívárvány optikájáról szóló könyükben egy egész fejezetet szenteltek a festészetben és grafikában
előforduló hibás szilvárvány-ábrázolásoknak [4].

- Kakalios a *The Physics of Superheroes* című könyvében jó néhány hollywoodi fantasztikus film szuperhőséi fizikai képességeinek lehetőségét vagy lehetetlenségét vette górcső alá [5].

- Merriam és kollegáik az észak-amerikai Kansas tájegységéből készült tájképfestményeket elemzett földrajzi-geológiai szemszögéből [6].

- Zerefos és kollegái kimutatták, hogy a festményeken ábrázolt lemenő/főlkelő Nap vörös színárnyalata nagy vulkánkitörések után tendenciázónak mélyült, és számítógépes modellézéssel, valamint meteorológiai-optikai mérései adatosorok felhasználásával azt kapták, hogy a lemenő Nap vörös árnyalata a vulkánkitörések utáni légköri aeroszol-koncentráció növekedésével egyre mélyül [7, 8].

A 2017. évi egyik fizikai Nobel-díjas, Kip Thorne a *The Science of Interstellar* című könyvében a csillagászat és a relatívvitásemélet szemszögéből vizsgálta az *Interstellar* című tudományos fantasztikus filmbeli jelenségeket [9].

- Orvosok tanulmányokat írtak arról, hogy a festészetben és szépirodalomban a különféle betegségeket miként írják le, illetve azok külső testi megnyilvánulásait hogyan ábrázolják, s azok helyeit, s -[10].

- Kézművészek részletesen elemzették Vincent Willem van Gogh (1853—1890) festményei festékeinek összefüggéseit, és kiderítették a levágott való érintkezések lezajló lassú kémiai reakciókat, melyek felelősek több festék szemmel is jól látható színváltozásaiért [12].

- Trigonometriai számításokkal kimutatták, hogy a Homerozos *Iliász* című eposzban szereplő azon állítás, miszerint Poszeidón tengeristen Számosz hegyéről nézve végig a távoli Trója város görögök általi ostromát hibás, mivel ez lehetetlen a föld felszínének gőrbülete miatt [13].

Azzal, hogy természetttudósok rámutatnak a bölcsések, film- és képzőművészek alkotásaiban előforduló olyan hibákrán, amelyek ellentétben állnak a természet-tudományos ismeretekkel, fontos szerepet töltenek be, mert ezáltal is tisztul a kultúra. A tudósok felelőssége és feladata az élet bármely területén felbukkanó tévedésekre felhívni a figyelmet és azokat lehetőség szerint kijavítani. Ily módon például a kutatók sze- repkére az áltudományos téveszmék elleni harc is. Az utóbbiak persze sokkal nagyobb kárért okoznak a tár- sadalmon, mint például a film- és képzőművészi alkotásokban elkövetett hibák, de mindkettő ellen ér- demes és kell is harcolni.

Írásunkban arra vállalkozunk, hogy a látványteh- nikai szempontból jelentős híres filmekben és mág- yar rajzfilmekben biomechanikai szemszögéből ele- mezzük a négylábú állatokat utánzó robotok, kézzel, rajzolt és számítógéppel animált négylábúk lépés- sorrendjét [14]. Vizsgálataink előzményeként biofi- zikusok ezernél is több képen (festményen, grafikán,
szobron, fényképekben, domborművekben, öskori barlangfestményeken) vizsgálták, hogy a négylábú állatok, főleg lovak járásformája látható a művészi alkotásokban, alhatatóniai tankönyvekben és természettudományi múzeumokban mennyire valósághűen ábrázolják [15, 16, 17, 18]. Igen nagy hibákat találtak, ami az idővel csökkent, de még manapság is nagyobb, mint az öskori barlangi ábrázolások (rajzok, festmények, vészetek) hibájátja, azaz meglepő módon az őskor sokkal valósághűbben ábrázolta a négylábúak járását, mint a modernkori művészek zóme.

Filmekbeli négylábú animációk

Eadweard James Muybridge (1830—1904) angol/amerikai fotográfus úttörő munkássága óta tudható, hogy a négylábú állatok lassú és gyors járásának lépéssorrendje mindig a bal hátsó (BH) — bal első (BE) — jobb hátsó (JH) — jobb első (JE) mintát követi fajtájától függetlenül. E lépéssorrend biztosítja ugyanis a legnagyobb állásszilárdságot járás közben. Az 1. táblázatban foglaltuk össze azon filmeket, amelyek négylábú animációinak járását elemezik annak kiderítése érdekében, hogy a valódi négylábúak BH-BE-JH-JE lépéssorrendjét követik-e vagy nem.

<table>
<thead>
<tr>
<th>A film címe</th>
<th>Év</th>
<th>Rendező</th>
<th>Négylábú animáció</th>
<th>Lépessorrend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Csillagok háborúja I. (4.): Baljós árnyak</td>
<td>1999</td>
<td>George Lucas</td>
<td>lépegető térkivétlő</td>
<td>jó (ügetés)</td>
</tr>
<tr>
<td>Csillagok háborúja II. (5.): A klónok támadása</td>
<td>2002</td>
<td>George Lucas</td>
<td>négylábú harci gépezet</td>
<td>jó</td>
</tr>
<tr>
<td>Csillagok háborúja III. (6.): A Sith-ek bosszúja</td>
<td>2005</td>
<td>George Lucas</td>
<td>gyik</td>
<td>jó (ügetés)</td>
</tr>
<tr>
<td>Csillagok háborúja IV. (1.): Egy új remény</td>
<td>1977, 1997 (felújított)</td>
<td>George Lucas</td>
<td>négylábú állat</td>
<td>jó</td>
</tr>
<tr>
<td>Csillagok háborúja V. (2.): A birodalom visszavág</td>
<td>1980</td>
<td>Irvin Kershner</td>
<td>AT-AT birodalmi lépegető</td>
<td>rossz</td>
</tr>
<tr>
<td>Csillagok háborúja VII: Az ébredő Erő</td>
<td>2015</td>
<td>Jeffrey Jacob Abrams</td>
<td>nagytestű, lassú állat</td>
<td>járásnak rossz, (ügetésnek jó)</td>
</tr>
<tr>
<td>Jurassic park I.</td>
<td>1993</td>
<td>Steven Spielberg</td>
<td>Brontosaurus</td>
<td>jó</td>
</tr>
<tr>
<td>Jurassic park II.: Az elveszett világ</td>
<td>1997</td>
<td>Steven Spielberg</td>
<td>Stegosaurus</td>
<td>jó</td>
</tr>
<tr>
<td>Jurassic park III.</td>
<td>2001</td>
<td>Joe Johnston</td>
<td>Diplodocus</td>
<td>jó</td>
</tr>
<tr>
<td>Jurassic World</td>
<td>2015</td>
<td>Colin Trevorrow</td>
<td>Ankylosaurus</td>
<td>jó</td>
</tr>
<tr>
<td>A gyűrűk ura II.: A két torony</td>
<td>2002</td>
<td>Peter Jackson</td>
<td>harci elefánt</td>
<td>jó (tevejárás)</td>
</tr>
<tr>
<td>A gyűrűk ura III.: A király visszatér</td>
<td>2003</td>
<td>Peter Jackson</td>
<td>harci elefánt</td>
<td>jó (tevejárás)</td>
</tr>
<tr>
<td>Vuk</td>
<td>1981</td>
<td>Dargay Attila</td>
<td>Kag és Vuk</td>
<td>jó</td>
</tr>
<tr>
<td>Kis Vuk</td>
<td>2008</td>
<td>Gát György</td>
<td>Kis Vuk</td>
<td>jó</td>
</tr>
<tr>
<td>Macskafogó I.</td>
<td>1986</td>
<td>Ternovszky Béla</td>
<td>mechanikus kuta</td>
<td>jó</td>
</tr>
<tr>
<td>Macskafogó II.: A sátán macskája</td>
<td>2007</td>
<td>Ternovszky Béla</td>
<td>mechanikus kuta</td>
<td>rossz</td>
</tr>
</tbody>
</table>

2. táblázat

<table>
<thead>
<tr>
<th>robot neve</th>
<th>gyártás éve</th>
<th>jármód</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Dog</td>
<td>2008</td>
<td>lassú járás, ügetés</td>
</tr>
<tr>
<td>Little Dog</td>
<td>2009</td>
<td>lassú járás, ügetés</td>
</tr>
<tr>
<td>LS3</td>
<td>2012</td>
<td>lassú járás, ügetés</td>
</tr>
<tr>
<td>Spot</td>
<td>2015</td>
<td>gepárdszerű vágta</td>
</tr>
<tr>
<td>Cheetah</td>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>Wild Cat</td>
<td>2013</td>
<td></td>
</tr>
</tbody>
</table>
Figyelemre méltó módon a jóval a Jurassic park előtt készült Vuk (1981) és Macskafogó I. (1986) magyar rajzfilmekben a kézzel rajzolt animációk lépésorrendje helyes, valamint a 2008-as Kis Vuk című számítógépes rajzfilmben is, azonban a Macskafogó II: A sátán mackszája (2007) rajzfilmben rossz. Ennek az oka, hogy Magyarországon nincsenek olyan animációk a Industrial Light and Magic Hollywoodban, ahol több filmhez is ugyanaz a csapat készíti az effektusokat, illetve már kialakult egy elfogadott számítógépes módszer az állati mozgások életű illusztrációjára. Természet Bélától tudjuk, hogy a Macskafogó I.-ben az animátor az évtizedes tapasztalatai szerint kézzel rajzolta animált Muybridge eredményeit, és ezen alapul az értelem, és a természet törvényei szerint.

A Macskafogó II.-ben a számítógépes animátor egy olyan program szerint mozgatta a kutya lábait, amiből nem volt beépítve a négylábúak helyes lépésorrendje, amit senki sem ellenőrizt.

Négylábú robotok

7. ábra. A Big Dog lassú járásban, BH-BE-JH-JE lépésorrenddel megy át a tégékből épített akadályon

BIOFIZIKA

is gondtalanul járni és komoly terheket cipelni. Gyorsabb mozgások tudnak ügetni is, vagy akár gepárd módjára futni, vágatni. Több robotot úgy tervezték, hogy mozgása utánozza valamelyik néglábló állatát. A 2013-ban megalkotott Chettah nevű robot (8D ábra) például a gepár ndőg tátját utánozva állított be sebességrekordot.

Következtetések

A híres filmekbeli néglábló animációk elemzéséből kiderült, hogy grafikai felőlődésékkal együtt jelent meg az igény arra, hogy a néglábló mozgásokat minél élet szerűen, így minél helyesebben ábrázolják. A régebbi filmekben, amikor még makettetek és képockánkénti felvételt (stop motion) használtak, gyakrabban fordultak elő helytelen, nem valóságul lépéssorrendek, mint a számítógéppel generált láthatványosokkal teli későbbi filmekben. Néhány magyar rajzfilmben, örömleti módon, még a számítógépes animációok elterjedt használata előtt is helyesen ábrázolták a néglábló járatst, majd furcsa módon éppen a számítógépes animációval készített folytatásban fordult elő hibás járásábrázolás.

GELLAI BENCE – HORVÁTH GÁBOR

Irodalom

E SZÁMUNK SZERZŐI

BABINSZKI Edit, PhD, geológus, Magyar Bánya- és Földtani Szolgálat, Budapest; BAGGY GYÖRGY, gyögyész, az MTA doktoriai, egyetemi tanár, Semmelweis Egyetem GyógyszerhatástanIntézet, NAP-2-SE Új Antidepresszív GyógyszerceptPont Kutatócsoport, Budapest; FIÁTH RICHÁRD, tudományos munkatárs, MTA Természettudományi Kutatóközpont, Kognitív Idegtudományi és Psychológiai Intézet, Pázmány Péter Katolikus Egyetem, Információs Technológiai és Bionikai Kar, Budapest; GÁSPÁR ANITA, informatikus kónyvtáros, Magyar Földtaniaszt Geofizikai Intézet, Budapest; GELLAI BENCE, Éötvös Loránd Tudományegyetem, Biológiai Fizika Tanszék, Budapest; HORVÁTH GÁBOR, egyetemi docens , Éötvös Loránd Tudományegyetem, Biológiai Fizika Tanszék, Budapest, LADÁNYI LÁSZLÓ, geográfus, Budapest; MARTON GERELY, PhD, tudományos munkatárs, MTA Természettudományi Kutatóközpont, Kognitív Idegtudományi és Psychológiai Intézet, Pázmány Péter Katolikus Egyetem, Információs Technológiai és Bionikai Kar, Budapest; NÁNAI TIBOR, MTA Természettudományi Kutatóközpont, Kognitív Idegtudományi és Psychológiai Intézet, Budapest; SOMOGYI BOGLÁRKA, PhD, MTA Ökológiai Kutatóközpont, Balatoni Limnológiai Intézet, Tihany; PAPP PÉTER, geológus, Magyar Állami Földtani Intézet, Budapest; PETSCHEMER ANNA, tudományos segédmunkatárs, Semmelweis Egyetem GyógyszerhatástanIntézet, Budapest; PETSCHEMER PÉTER, gyögyész, PhD, MTA-SE Neuropszichofarmakológiai- és Neurokémiai Kutatócsoport, Semmelweis Egyetem, Gyógyszerhatástan Intézet, Budapest; TÖTH MONIKA, MTA Ökológiai Kutatóközpont, Balatoni Limnológiai Intézet, Tihany; ULBERT ISTVÁN, PhD, Dsc., tudományos tanácsadó, MTA Természettudományi Kutatóközpont, Kognitív Idegtudományi és Psychológiai Intézet, Pázmány Péter Katolikus Egyetem, Információs Technológiai és Bionikai Kar, Budapest; VENEKTIÁN PÁL, akadémikus, MTA Szegedi Biológiai Kutatóközpont, Blokkvédelmi Intézet, Szeged; VÍRÓS ATTILA, geológus, MTS Ölsényi és Földtani Tár, Budapest; VÍRÓS LAJOS, MTA Ökológiai Kutatóközpont, Balatoni Limnológiai Intézet, Tihany.