Műalkotások kritikus fizikusszemmel

Egy természettedős még akkor sem tud kibújni bőréről, amikor verseket olvas, képzőművészeti alkotásokban gyönyörködik, vagy filmeket néz. Úgy nevelkedett, arra szakosodott, hogy észrevegye és szóvá tegye a legkisebb tudományos pontatlanságot is, hát még a tudománytalan szarvashibákat és tévhiteket. Cikkemben olyan hibákat, pontatlanságotakat mutatok be, melyekre szépirodalmi művekben, műalkotásokban és filmekben bukkantam, s amelyekről hazai vagy külföldi szakfolyóiratokban olvastam vagy írtam kollégáimmal együtt. Ezzémmel jobbító szándékval világítok rá a művészetek néhány tévedésére, valamint szemléletem, hogy a reálkultúra ismeretei milyen gyümölcsözően alkalmazhatóak a versek, műalkotások és filmek természettedősnyis szemszögből történő elemzésében is.

Kedzjük Homérosz görög költő K.r.e. VIII. században írt Odüsszeia című eposzát, aminek 21. éneke egy íjversenyről szól. Ebben Odüsszeusz király felesége, Pénelopé körüin az volt az utolsó erőpróbájuk, hogy az eltűnt nek hitt Odüsszeusz íjaval 12 fejsze fokán kellett átjóniuk ahhoz, hogy egyikjőik elnyerje az özvegynek hitt királynő kezét (1. ábra). Ezen íjversenyen csak az inkognítóban megjelent Odüsszeusz tudta felajazni az erős királyi íjat, azaz meghajlítani a kemény íjtestet, hogy mindkét ágvégére ráakasztassza a húrt. A költémeny és a belőle készült filmadaptációk részletes elemzésével, valamint ímjechénikai ismeretek főhasználásával a következőkre juthatunk [1].

Az íjászok is jól ismerik a filmművészetből származó legendát, hogy Odüsszeusz túzón melegithette az íjat felajzás előtt. Ennek az az értelme, hogy a hőre lágyuló íjtest könnyebben hajlíthatóvá, s így kényelmessebben felajzhatóvá válík melegítés hatására. Viszont ilyen, lánggal történő ímmelegítés csak egyes Odüsszeusz-filmekben szerepel, az eredeti Odüsszeusz-vers nem tartalmaz ilyet.

Egyes filmadapciókban Odüsszeusz a már felajzott íjat melegiti lánggal. Ennek ennek értelmében, ha az íj hőre lágyulva gyengül, hiszen a felajzott melegitett íjat löve kisebb kezdősebességgel repül ki a nyílósző, mint egy hidegebb s ezért erősebb íjjel. A versben csak az íj kezére való dörszületése, simogatása és tapogatása szerepel. Igaz viszont csak mintegy 10 °C-al lehet fölénegetni az íjtest külső rétegét, ami alig változtatja meg az íj erejét, mert az erős zömét szolgáltató mélyebb rétegek hőmérséklete nem változik az íjtest rossz hővezető-képessége miatt. Vagyis egy erős íj kezére melegítéssel nem gyengíthető meg annyira, hogy ez jelentősen könnyítene a felajzást. Ezért rejtély maradt, hogy Odüsszeusz íjának tapogatása, simogatása mennyiben és miért segítette a felajzást.

2. ábra. (A) Jankovics Marceli Az égig éró paszuly című mesefilmjének egyik jelenete, amikor a mesehős az égébe nyúló bábszárra mászik fől. (B) Az űrlift koncepciójának vázlata.
Egyes filmadaptációkban Odüsszeusz a már felajzott új húrját simogatja, aminek szintén nem sok értelme van a húr tisztogatásán vagy bezisozásán kívül, mert az így főmelegített húr is csökkenti az új röpítőerejét, azaz a kilöött nyilvessző kezdősebességet. Maradt tehát a bizonytalanság az Odüsszeusz-féle íjversenyről szóló versrészlet fizikai értelmezésében, néhány filmadaptációbeli íjmechanikai hiba pedig nyilvánvaló [1].

Égig éró paszuly és úrkutatás

A meséknél maradva, szinte minden nemzet mese- és mondvilágában előfordulnak égig éró növények, amelyeken fölmásza a hősök különféle csodákkal teli égi világba jutnak. A magyar kultúrkörben e témában megemlíthető például Benedek Elek (1859-1929) íróknak Az égig éró fa című meséje vagy Jankovics Marcell (1941-) rajzfilmrendezőnek Az égig éró paszuly című mesefilmje (2A ábra). Habár ilyen égig éró növény nincs, ha létezne, akkor mechanikája és alakja megegyezne a NASA által megtervezett úrkábel mechanikájával és alakjával [2].

Az úrkutatókat foglalkoztató egyik fontos kérdés, hogy miként lehet még könnyebben és olsóban eljutni a világüre. A rakéták úrkutatásbeli alkalmazását az elsők között Konsztantyn Eduardovics Csikovszkij (1857-1935) orosz fizikus szorgalmazta. Ő vetette föl 1895-ben először egy égi kastély, mai széchasználattal egy úralomás megépítését; amit egy magas földi továbyhoz kapcsoltak volna egy erős kábellel (2B ábra). Eme úrkábelben egy ürülő szállította volna az emberek, üreszközöket és alapanyagokat a Föld és a magasban keringő úralomás között.

Az úrkábel tervezésével régóta foglalkoznak már az úrkutatók és űrmérnökök, mivel ennek megépítése 10 000-red részre oszkottak a világüre jutás költségeit. A kábel alsó végét a Földön egy 50 km-es toronyhoz kötnek az Egyenlítő mentén, felső végét pedig az Egyenlítő fölött közel 36 000 km magasságban húzódó geostacionárius pályán túl a Föld forgási szögsebességgel forgó jákora ellentétegyúhoz rögzítik. Így a kábel megfeszíthető a Föld forgása miatti centrifugális erő miatt. A kifejlesztő úrkábelen vágányok lennének, amelyeken járművek szállítanak az utasokat, a víz-, élelem- és energia-utánpótlást. A földfélé vezető úton megállók lennének elhelyezhetők, ahonnan pályára állíthatóak lennének a különböző üreszközök.

Mindez elsőre igen futurisztikusan hangsúlyozhat, hiszen egy több mint 36 000 km hosszú kábel előállításához még akkor is rengeteg anyag kell, ha az csak néhány méter vastagságú, és nem is készühet akármillióból. Az ürülő-úrkábel megtervezéséhez a nanotechnológia vihet közlembbe 1991-ben fedezték föl a szén-nanocsokeket, amelyek rendkívüli elektromos és mechanikai tulajdonságokkal bírnak. Az úrkábel szempontjából az a leglényegesebb, hogy a szén-nanocsokek szaktésvilágsága meghaladja a gyémánttét és, miáltal az úrkábel vastagsága minimálizálható. Ahhoz azonban, hogy a szén-nanocsokeket az úrkábel létrehozásához szükséges nagyon erős kompozit anyag előállításához lehessen felszínálni, legalább néhány mm-re kell növelni a hosszukat. Ezért is tesznek nagy erősítéseket a hosszabb szén-nanocsokek előállítása érdekében.

Kiszámítható, hogy milyen alakúnak kell lennie a földi Egyenlítőhöz rögzített, azzal együtt forgó, a geostacionárius magasságban maximális átmérőjű úrkábelen, aminek ellensúly nélkül végtelen hosszunká kellene lennie és centrifugális erőnk köszönhetően feszülne ki [2]. Ez csak akkor valósulhat meg, ha a függőleges kábelre lefelé ható gravitációs erő megegyezik a kábelre a Föld tengely körüli forgásából származó, fölfele ható centrifugális erővel. Ugyanez a helyzet a mesében égig éró növényen is: a növény csak akkor létezhetne, ha olyan lenne szárának alakja, hogy a Föld rá ható gravitációs erejéjének és a gyökere által kifejett, lefelé irányuló maximális húzóerőnek az összegét kiegyenlőznén a növényen ébredő, fölfele mutató centrifugális erő. Ekkor a növény szára nem rosskodna össze a saját súlya alatt, de a centrifugális erő sem tépne ki a földből gyökrestül. Az úrkábel végként hossza úgy rövidíthető, hogy
a geostacionárius pályán túl, attól bizonyos távolságban egy ellensúlyhoz rögzítjük, aminek tömege szintén kiszámítható [2].

Villámcikázás festményeken

E vizsgálatokból tudjuk, hogy a festett és valódi villámok főleg az ágszámban különbözők: a festett villámok legfőleg 11 águk, míg a valódiak ennél akár 5-ször ágsabbak is lehetnek. 1882 után — amikor Jennings elkészítette első villámfényképeit — egyre több elágazó villámot festettek, mint korábban, 2000 óta pedig a többágy villámfestmények száma jelentősen megnőtt, alkalmazott a digitális fényképezőgépek terjedése miatt. A festett és valódi villámok főágának relatív hossza és elfordulási szögeinek eloszlása (cikk-cakkossága) gyakorlatilag nem különbözik. Ha a villámakéz száma nem volt nagyobb 11-nél, akkor azt a tesztalanyok elég pontosan becsültek meg. Ha a villámakéz száma meghaladta a 11-et, akkor a tesztalanyok érzelmes alulbecülték azt, a tényleges és becsült ágszámok közti, exponenciálisan növekvő különbséggel. A villámszámok becslese független volt a villámépek 0,5, 0,75, 1 másodperces fel-villanási idejéttől.

A festők a villámakat zömében a mútermükben emlékezetből illusztrálják, nem a szabadban, zivatarok közben. Ez az egyik oka a festett és valódi villámok bizonyos alaktani jellemzők közti különbségeinek. Manapság azonban a festők a villámakról készült fényképekről is ihletet meríthetnek. A művészek azért festenkép maximum 10-11 ágú villámat, mert mi, emberek csak akkor tudjuk helyesen megbecsülni a villámok ágszámát, ha az 10-11-nél nem nagyobb. Ennek egyik oka talán az, hogy a két kezünkön összesen 10 ujj van.

Amikor a művészek villámat festenek, lényegében egy pszichofizikai kísérletek részesei, aminek eredményei a festett villámok. E villámok morfológiajából arra lehet következtetni, hogy az ember látórendszerére milyen pontosan képes érzelkéni, feldolgozni és kivonni a lényeges alaktani információkat az egy másodpercnél nem hosszabb ideig tartó villámalásokból.

Számos festőművészről tételezhető fel, hogy a villámakat is valósághűen próbáltak vázsonra vetni. Ilyen volt például Joseph Mallord William Turner (1775-1851) angol realizmus festőművész, a romantikus tájképek plain air stilusú mestere, aki fiatal korában a turistákna szóló ültönyvek számára festett tájakat és városokat. Turner festett villámai nagyon hasonlítanak a valódiakhoz [3].

Hogyan jár a ló valójában?

A képzőművészeg leggyakrabban ábrázolt állata a ló, ami az emberiség fontos közlekedési eszközeinek, tehervondjáinak, szórakozási és sporteszközének, stá- tusszimbólumának és nem utolsó sorban táplálékának számít. Festményeken, grafikákon, bélyegeken, szobrokon, domborműveken és érméken találkozhatunk művészi lóábrázolásokkal, de az ősembre is sürűn illusztrált lovakat barlangfestményeken és szkílavézeteken. Művészettörténetek részletesen emlegették e lóillusztrációkat a kultúrtörténeti vonatkozásaiakkal együtt. A lovak és más négylábú állatok mozgásának biomechanikájához értők természetesdumányos szemszögéből is görcső alá vették e
lóabrázolásokat. Ők világítottak rá, hogy a lőjárás művész megjelenítéseinek zöme hibás (4. ábra), mert a lovak a valóságban úgy sohasem tartják lábaikat, ahogyan a művészek szoktak illusztrálni [4].

A lovak és minden más négylábú állat járás közben ugyanazt a lépéssorrendet (bal hátsó — bal elso — jobb hátsó — jobb elso) használják, ami a legnagyobb állásszilárdságot biztosítja. E kötött lépéssorrendhez a relatív lábtartások korlátozott számú variációja tartozik, ami jelentősen behatárolja a négylábfák járás közben előforduló láhbelyzeteit. Edwaard Muybridge (1830-1904) amerikai fotográfus munkásságának köszönhetően, ezt a hozzáértők már az 1880-as évektől tudják. A múlkatolásokon mégis sürűn hibás a négylábfák járás közbeni lábtartása [4].

Közle másfél ezer négylábfú járásábrázolás biomechanikai elemzésével kiderült, hogy a legkisebb, 46%-os hibára az öskori járásábrázolásokra jellemző. A Muybridge előtti járásábrázlásokat hibáztatta 84%-a, a Muybridge utániak pedig 58%-a, míg a művész lőjárásábrázolásoké 71% [4]. A természetudományi muzsok tornában nem művész-esztétikai igénytel állítják ki a különféle négylábfák kitömött példányait, csontvázait, és az állatontáli tankönyvekben sem ilyen célal abrázolják a négylábfák, főleg lovak csontvázát, izmait és testét. A természetudományi muzsokból kitömött négylábfak járásábrázolásainak 41%-a rossz, ugyanakkor az állatontáli-tankönyvekben található négylábfák, főleg lovak járásának 64%-a hibás. Végül a gyermeknek szánt négylábfú játek állatfigurák (zömöben lovak) járásábrázolása 50%-a hibás. E hibákat a lehetőség részére választja a lehetőséges lábtartások közül; ekkor hibáztatja 73%-os os lenne.

A négylábfú járásábrázolások hibáztatják az 1880-as évek utáni 26%-os csökkentése arra utal, hogy a művészek egy része ismerte Muybridge munkásságát, és figyelembe vette az eredményeit a négylábfák járásának abrázolásakor. Az öskori négylábfú járásábrázolások legkisebb (46%) hibáztatja szerint az ősberek jobban megfigyelhetők és pontosabban abrázolták szikláfestményeik és -vésettiken a négylábú zsákmarányaikat járását.

Négylábfú járásábrázlásokkal a filmvásznin is gyakran szembeüllhetünk kaland vagy tudományos ismeretterjesztő, illetve rajzfilmekben. Hires filmekben (CGságok háborúja 1-6, Jurassic Park 1-4, Gyerűük ura 1-3) és magyar rajzfilmekben (Vuk, Macskafogó 1-2) biomechanikáigalelemeze a négylábfú állatokat utánzó, kézzel vagy számítógéppel rajzolt négylábfú animációk lépéssorrendjét, kiderült, hogy a filmek grafikai feljölésével együtt jelent meg a törekvés arra, hogy a négylábfú mozgásokat minél életszerűbben abrázolják [5]. A régebbi filmekben, amikor még maketteket és képkockánkénti felvételt használtak, gyakrabban fordultak elő nem valósághú lépésorrendek, mint a számítógéppel készült későbbi filmjelentések. Legelőször Steven Spielberg (1946) amerikai rendező filmjeiben egy szakértő által felügyelt animációkkal hozták meg az igényt a négylábúak járásának filmekben helyes bemutatásra. A magyar Macskafogó I-ben a számítógépes animációk elterjedése előtt helyesen abrázolták a négylábfák járását, míg a számítógéppel később készített II. folytatásban hibás lett a járásábrázolás [5].

A kelő/nyugvó napkorong festett vöröse

A festészet egyik leggyakrabban kiaknázott természeti téma a napkelte és napnyugta, amikor a horizont közeli napkorong vörösen vagy narancssárgán ízzik (5. ábra). Nem is gondolnánk, hogy a fölkelő/lenéni nap korjának végezetése léggörög fiziológiai adatok forrása is lehet. A meteorológiai műszerek vizsgálatok és azok mérési eredményeinek irásos folyógyása csak közé 200 éves múltra tekintethet vissza. Ily módon például léggörögünk egyik fontos paraméteréről, az aeroszolkonzentráció tér- és időbeli változásáról színesnek 20 évnel korábban műszerek regisztrációmok. Az ennek korábbi idők aeroszolvizonyainak földertézésében segítettek a
több száz éve keletkezett festményeken megörökítettei hallanok és alkonyok napkorongszíneinek tanulmányozása, és a tőlük fiatalabb hasonló festmények megfelelő színivel való összevetése [6]. Természetesdödások kimutat- ták, hogy a festményeken ábrázolt földelő/lemenő Nap korongjának vörös színárnyalata nagy vulkánkörítések után tendenciósan mélyült, és számítógépes modellé- zéssel, valamint meteorológiai-optikai mérései adatsorok főhasználásával azt kapták, hogy a földelő/lemenő Nap vörös árnyalata vulkánkörítések utáni légkörös aeroszol- koncentráció növekedésével egyre mélyül. Az is kiderült, hogy a festmények horizontközeli napkorongjának vörös színárnyalata tendenciósan mélyült az idő teltével, ami a légkörös aeroszomlennyiségs tendenciájának növekedésének eredménye. Vagyis korábban a földelő/lemenő napkorong kevésbé volt vörös, mint napjainkban.

Minden a légkördiagnosztika festmények számszerű elemzé- sére épülő módszere [6], ami részben pótolja a műszeres meteorológiai adatok 200 évnél korábbi hiányát.

Hibásan festett szívárványok

Festményeken, grafikákon vagy rézkarcokon gyakori hiba a szívárvány ívét úgy ábrázolni, mintha a megfigyelőtől független térben kifejszülő merev körív lenne, amit kissé oldalról is nézhetne az ember [7]. Ha ez így lenne, akkor a körívak alakú szívárvány ellipszisívűnek látszana. De minden megfigyelő csak a saját, egyedi szívárványiét láthatja, ami mindig körív alakú [6, ábra].

A szívárványt a levegőben hulló eső- vagy kődőseken megtörő és belső felületükről viszavertődő napfény szeműkbe jutó sugárak atakjuk, amelyek csak megfelelő (főszívárvány közepé: 41°; mellékszívárvány közepé: 52°) nyilásszögű, azonos tengelyű kúpok palástjain mentén haladva érhetünk szemünkbe, ami e kúpok közös csúcsa. Ily módon egy mellettünk álló megfigyelő által észlelt szívárványa nem láthatjuk, főleg nem oldalpenti- tivában ellipszeszt torzult. Mint ahogyan a szívárvánt sohasem érhetjük el, s így az leve alatt sem haladhatunk el, mint gyakran történik egyes mestermekben vagy mesekönyvek illusztráción.

A képzőművészeti szívárványábrázolások másik jellemző hibája, amikor a szívárvány változásban feltün- tetik a napkorongot [7]. Máspedig a szívárvány csakis a nappali szembeni anti-nap körül látható. További hiba szoktak lenni a szívárványtívek színkorpsorrendjének főlcsere- lése [7]. A 41° nyilásszögű főszívárvány színkorpsorrendje belülről (alulról) kifele (főfelfelé) haladva a következők: ibolya, kék, zöld, citrom, narancs, vörös. Ugyanakkor az 52° nyilásszögű első mellékszívárvány színei alulról főfelfelé forditva sorjáznak: vörös, narancs, citrom, zöld, kék, ibolya.

Festmények císqlagai
Festők előszeretettel ábrázolnak císqlagokat és ásványait egyéb formában. E festett císqlagok a környezetük más tárgyaiba vagy a holdkörökhöz viszonyított mérete mindig egészben nagy. Ha valós látásiugyekben ábrázolnánk őket, akkor szabad szemmel csak kivehetetlenül apró festékkörtökéjűként jelenhethetnek meg a vászon. Egyes festményeken, például a holland Vincent Willem van Gogh (1853-1890) művein, a císqlagok „súndiszokként”, számos ággyal bíró fény- forrásokként tünnek fel. Ha egy festő megéli az idős kort, aki a fiait és hallot korábban is ábrázolt císqlagokat, akkor az is előfordulhat, hogy a fiatkorkori císqlagainak ágszma kevesebb és mint a későbbieké. Ez azonban nem hibás, mert szemünk tényleg ágasbogásnak látni a pontszerű fényforrásokat, így a císqlagokat is megőrzikor növekedé- tével egyre több ágúnak is [8]. Mivel ezen ágak száma mín- dig páros, ezért a festett císqlagok páratlan ágszma már hibának számít, amit a festők bizony sűrűn elkövetnek.

A císqlágok fiziológiai okai a szemelcsénk inho- mogén szerkezetében rejlik [8]. A közel ellipszoid alakú szemelcsénk igen elnyúlt szettjei a lence egyik pólusától indulva, az egyenlítiőjén áthaladva majd az eltérő jelelecsépoló, „nyugók”-osztályban. Geometriai szükségszerűségből e szettjei a lencesarkok közélen egymásra retegződnek, miáltal egy N ágú, císslag alakú megvastagodott sejtrészeg-zödést képeznek. E központi lencsecsillag ágainak N száma a korral nő. A szemelcsén áthaladó fényfénynél e lencescillagot optikailag nagyobb törésmentő ágai elhajlik és a retinánkon minden egyes ágra merőlegesen, az ág mindkét oldalán egy-egy elhajlású csókot alkot. Ha az N=M+P (>=2) ágú lencsecsillag M olyan ággal bír, aminek nincs a lencescillag középpontjához képest ellenoldali párhuzamos párja és P olyan ággal rendelkezik, aminek van ellenoldali párhuzamos párja (mialatt P mindig pá- ros), akkor retinánk 2M+P darab ágat észlel a pontszerű fényforrás körül, mely ágszám mindig páros, hiszen P pá- ros és 2M is az, függetlenül M páros vagy páratlan voltától. Általánosítva a csillagok e látszolagos ágait, nem véletlen, hogy számos (ha nem minden) kultúrában előfordul a císslag, mint szimbólum. E císslagjelképek
között vannak páratlan ágúak (gondoljunk az ötgű csillagra) és párosak (például a hatágú Dávid-csillag) is.

A vízfelszin sötét foltja

E mindennapi légkörözékteljes meg szakmai körıben is alig ismert. Pedig amikor felhőtlen az ég és a nap kongor a horizont közelében jár, közel ésszakra vagy dérle nézve, a vízfelülete bárki megpillanthatja a Brewer-foltot a függőlegestlől lefelé 53°-ra nézve. Kialakulásának oka, hogy a tiszta ég függőleges északi és déli sávjáról napkelte vagy napnyugta környékén pontosan vagy közel függőlegesen poláros égény vetődik a vízfelületre, ami a függőlegestlől 53°-os beésési szögén vagy annak közelében nem vagy alig viszsa a függőleges rezgési fényt [9].

Ritkán örökkétegett meg festők a Brewer-foltot, de olykor helytelenül, mert többnyire a műtermükben, emlékezetből festettek le a látottakat, miatt elfelejtettek, hogy pontosan mit és hogyan latták. Festményeken a vízfelszin sötét foltjai sokszor tárgyak tükörződésével magyarázhatók. Nagyon ritkák az olyan festmények, amelyeken a vízfelület sötét foltját nem lehet ilyen visszaverődéseket megfigyelni, hanem csak a Brewer-félé sötét folttal.

Például Jean-Edouard Vuillard (1868-1940) A révész című festményének (1897. D’Orsay múzeum, Párizs) folyófelszínén [7, ábra] minden egy Brewer-fél látható [9]. A festményen ábrázolt tájat a bal oldalt lenyugvó vagy félkelő nap sárgás fénye világítja meg, így a festő ésszakra vagy dérle tekint és látja az eget meg annak vízfelszínü tükörképet. A világoskék ég majdnem teljesen tiszta és a vízfelszin foltos a függőlegesen poláros égényt nem vagy csak alig tükrözi. Ezért alakul ki a Brewer-féle sötétkék folt a vizet, a festmény közepén és főleg a jobb alsó sarkában. A sárugó lombú fák körül származó fény gyakorlatilag nagyobb, ezért a vízfelszinről még a Brewer-szög közében is legalább a fele (a vízfésznává poláros összetevője) visszaverődik, ellentétben a függőlegesen poláros égék középpel. Így a sárga fák fényesülési tükörződnek a vízfelszínről, míg a világoskék ég tükörképe sötétkék körülőről.

Bennszülöttek testfestése és a parazitológia

Sajátos műalkotásnak tekinthető egyes afrikai, ausztrál és papua-új-guineai bennszülött törzsek jellegzetes mintázattal festettek. E barna bőrű emberek természetes anyagokból kevert, többnyire világos színű festékekkel változatos alakú csíkokat és/vagy foltokat mázolnak testük csupasz felületrézeire (8. ábra). Teszük ezt különböző kulturális hagyományokból, például a törzsbeli rangjuk, koruk, nemük és státuszkul jelzése céljából. E festésfestés motívumait részben a környezetükben élő állatok jellegzetes külakoromintázatairól lehetséges nyílvánuló a hasonlóság a zebrák csikjai vagy a zsiráfok foltjai, és a csíkos vagy foltos festésfestés között. Nemréggel derült ki, hogy a csíkos testfestésnek van egy áldásos mellékhatása, mégpedig az, hogy vizualisan távol tartja az olyan vérszív rovárok, mint a bögölök és ccelegyek, amelyek vérszívásuk közben több veszélyes, olykor halálos betegség kórokozót természetes MÉRSZETTUDOMÁNYI KÖZÖNY | 150. ÉVF. 12. FÜZET 551 150 ÉV

8. ábra. Afrikai bennszülöttek jellegzetes csíkos testfestése

Ily módon a korábban csak esztétikai és kulturális jelentőségűeknek tartott festéseknek fontos egészségvédelmi szempont a van. Míg a tudományos kutatással is foglalkozó emberek számára e „kulturálisparazitológiai” felismerés újnak számít, addig az érintett bennszülöttek már az ősidőktől kezdve a szó szoros értelmében a saját börtönükön érezhetőek csíkos-foltos festések inkább parazitáktól védő hatását. A zebrák csikjai és a zsiráfok foltjai sok más csíkos/foltos állat mintázataihoz hasonlóan ugyanilyen parazitázó hatással bírnak.

E természetből ellesztett vizualis hatást használják ki a sötét színű lovak gazdái, amikor zebracsikos látakrót húznak fekete vagy barna (pej) lovaikra a vérszív bögölök ellen. A fehér (szürke) lovaknak kevésbé van erre szükségük, mert alig vonzzák a bögölöket.
Egy elterjedt tévhít: Coriolis a lefolyóban

A Szuperella című akciófilm Arnold Schwarzenegger és Sylvester Stallone főszereplői szuperbiztos és szigorúan titkos börtönhajóról való szökevősről szól. A hajó földrajzi szélsegségt az északi Sarkcisslag (Polaris) horizont fölötti szögmagasságája alapján egy szemüveglencesből házilag barkacsolt szekszámránthoz határozzák meg. Azt pedig, hogy a hajót a Föld északi vagy déli felé kerüljön tartozkodik-e, úgy dönöttek el, hogy a mosdókagylóban az óramutató járásával ellentétesen ürönyelt a lefolyó víz, vagyis a börtönhajó az északi feléken volt. Ennek alapja az a köz- keletű tévhít, hogy az északi feléken a mosdókagylóban az óramutató járásával ellentétes irányban, balra ürönyelve folyik le a víz, míg a déli feléken ellenkező forgásirányban, jobbra a Föld forgásából eredő Coriolis-erő miatt. Ezen erőhatást Gaspard-Gustave Coriolis (1792-1843) francia matematikus fedezte fel.

Eltekinve attól, hogy csak az északi felékről látható a Polaris sarkcisslag (azzal, ha a Szuperella egyik hősé látta azt, akkor tudnia kellett volna, hogy nem a déli feléken van), vagyis a Kis Medve csillagkép legényesebb csillaga (a déli feléken a Dél Keresztje csillagkép közelében van az égbolt látszolagos déli forgáspontja), fizikailag egy makacs tévhitnek számít, hogy a lefolyó víz ürönyésének irányát a Coriolis-erő határozza meg, ami a filmeken túl számos irodalmi műben is főbukkán, gyakran még tudományos ismeretterjesztő irásokban is. Számításokkal megmutatható, hogy például egy vízmolekulája az Egyenlítőtől észak/délre 3 méterre lévő, 20 centiméter sugarú mosdókagylóban 1 m/s sebességű lefolyásban jobbra/balra a molekulalabi oxigén- és hidrogénatomok távolságának csak 1,4 %-aval térül el a Coriolis-erő hatására [11]. Ez elhangyolhatóan parányai a lefolyóbeli vízüvöröny forgásirányát meghatározó más, több nagyságrenddel nagyobb erőhatásokhoz képest.

Hirességek háromdimenziós rekonstrukciója

Filmmész közben fölmerülhet az igény arra, hogy a film szereplőinek térhatású látványában résztesülhesünk még akkor is, ha már nem élnek. Vajon miként lehet már elhunyt személyek fejét és testét három dimenzióban megjeleniteni? Mindezt kétdimenziós filmkockából is rekonstruálhatjuk [12]. A személyről készült filmfelvételekből keresztük ki olyan jeleneteket, amelyekben a célszemély feje vagy teste forog, vagy valamekkora szögű fordulatot tesz meg. Ha a szereplő forgástengelyének helyzete a kamerához viszonyítva nagyjából állandó, akkor a filmészközlet időkésleltetéssel kivételes előadási háromdimenziós látványélmény (9. ábra).

Mindennek a következő az alapja. Egy forgó személyről filmet készítünk, amit egy számítógépes képnyír két egy-múltából vízszintesen elkilöült ablakban úgy vetítünk ki, hogy a bal és jobb szemünk csak a bal, illetve jobb ablakot láthatassza. Ha az egyik ablakban a másikhoz képest bizonyos időköddel történik a filmvitel, akkor két szemmel nézve a személy háromdimenziós látványa áll elő a néző látórendszereben. Ennek oka, hogy amikor két szemmel nézünk a nyugalomban lévő célszemélyt, bal és jobb szemünk kissé eltérő szögől látja azt, ami a térhatás feltétele. A forgó cél- személyről készült film egymástól megfelelő időtartással készített két képet nézve a bal és jobb szemünkkel, lényegében utánosuk a kettő szemét erő eltérő képeket [12].

IRODALOM