Remote sensing of flying insects by dark-field detection with telescopes and opto-electronics: The Lund University Mobile Biosphere Observatory

Ádám Egri¹, Mikkel Brydegaard², Gábor Horváth¹, Susanne Åkesson³

¹ Environmental Optics Laboratory, Eötvös Loránd University, Budapest, Hungary
² Lund Laser Centre, Lund University, Sweden
³ Centre for Animal Movement Research, Lund University, Sweden

Abstract

We present a method for automatically detecting flying insects and remotely acquire several of their parameters with the use of remote sensing and stand-off methods. We employ telescopes with a spectrometer, a high-speed camera and Si and InGaAs quadrant photodetectors, we demonstrate the measurement of the reflection spectrum, wingbeat frequency, size and movement direction of flying insects in a narrow volume. We employ a telescope battery towards a black cavity in order to minimize optical background. When insects fly through the field of view of the telescope, the sunlight scattered from the insect contains information that can be used to recognize and identify the insect and to obtain its behavioural characteristics. Such an equipment gives us the possibility to facilitate the better understanding of insect behaviour, and to evaluate different insect traps, for example. The Lund University Mobile Biosphere Observatory (LUMBO) was recently built and its first campaign was conducted in the summer of 2013, when one of the objectives was to study the selectivity of a liquid filled polarization tabanid trap developed in the Environmental Optics Laboratory of the Eotvos University. Here we present an overview of the telescope-based novel stand-off methods and some aspects of data evaluation of remotely optically sensed insects.
Remote sensing of flying insects by dark-field detection with telescopes and opto-electronics: The Lund University Mobile Biosphere Observatory

Ádám Egri, Mikkel Brydsgaard, Gábor Horváth, Susanne Åkesson

Introduction

We present a method for automatically detecting flying insects and tandemly acquiring video of their parameters with the use of remote sensing. The method is based on the utilization of a miniature camera connected to a high-speed numerical camera and a high-speed photography system. The automated detection system is able to recognize flying insect species and to determine the parameters of the flying insects, including their body size, wing length, and flight velocity. The system is based on the use of a high-speed camera and a high-speed video camera. The high-speed camera is able to capture images of the flying insects at a rate of 10,000 frames per second.

Methods

Experimental setup

We employ LUMEB's telescope system to observe a sky area of interest to detect the presence of flying insects. The system is based on the use of a high-speed camera and a high-speed video camera. The high-speed camera is able to capture images of the flying insects at a rate of 10,000 frames per second.

Preliminary evaluations

Birds and insects are often observed using remote sensing techniques. The use of remote sensing techniques is particularly useful in the study of birds and insects. The use of remote sensing techniques allows for the observation of birds and insects in their natural habitats without disturbing them. The use of remote sensing techniques also allows for the observation of birds and insects in remote locations.

Future plans

Our goal is to combine the data from these remote sensing techniques with the data from the high-speed camera to create a comprehensive database of flying insect species. The database will be used to study the behavior of flying insects, including their flight patterns, and to understand the role of flying insects in the ecosystem.

Acknowledgements

This work was supported by the Swedish Environmental Protection Agency, the Swedish Research Council, and the Swedish Natural Science Research Council (Vetenskapsrådet). The authors wish to thank the staff of the Lund University Mobile Biosphere Observatory for their assistance.

References


Figures and tables

Figure 1: Experimental setup of LUMEB's telescope system.

Figure 2: Preliminary evaluations of flying insect species.

Figure 3: Future plans for the LUMEB project.

Figure 4: Acknowledgements of the LUMEB project.

Figure 5: References for the LUMEB project.
NEW CHALLENGES IN ASTRO- AND ENVIRONMENTAL INFORMATICS IN THE BIG DATA ERA

Proceedings of the workshop

Szombathely, Hungary
14-16 May, 2014
New challenges in astro- and environmental informatics in the Big Data era

Proceedings of the workshop

Szombathely, Hungary
14-16 May, 2014

Edited by
J. Kovács and Gy. M. Szabó
List of participants

ALEKSIĆ, Jovan
BARNA, Barnabás
BARTA, András
BELGHOUL, Abdeslem LIMOS
BERÉNYI, Kitti Alexandra
BLAHÓ, Miklós
BODI, Attila
BROMOVÁ, Pavla
CSÁK, Balázs
CSEH, Borbála
CZIRJÁK, Zalán
DARÁNYI, Virág
DOBÓ, László
DOZSA, Ákos
EGRI, Ádám
ERDEI, Zeuzsanna
FARKAS, Péter
FERENCZ, Ágnes
GARAI, Zoltán
HERMANN, Edina Dóra
HORVÁTH, Eszter
HORVÁTH, Gábor
JANKOVICS, István
JEVREMOVIC, Darko
KÁLMÁNCZHELYI-FARKAS, Alexandra
KISS, Gregó
KISS, László
KISS, Tamás Sándor
KIS, Árpád
KOMA, Zsófia
KOSTIC, Uroš
KOVÁCS, József
KOVÁCS, Károly
LONGO, Giuseppe
LOPATOVSKY, Lukaš
MARINONI, Andrea
NAGY, Andrea
NAGY, Tamás
ORDASI, András
PALLIČKA, Andrej
PAPP, Dávid
PARAIS, Simon
PERGER, Krisztina
PINTÉR, Sándor
SÁRNECZKY, Krisztián
SIMON, Zoltán Péter
ŠKODA, Petz
SZABÓ, Gyula
SZABÓ, Róbert
SZALAI, Tamás
SZATMÁRY, Károly
SZÁZ, Dénes
TOUMANI, Farouk
VARGA, Tamás Norbert
VÁZNY, Jaroslav
VINCZE, Ildikó
VINKOVIČ, Dejan
VINKÓ, József
VUJCIĆ, Veljko

Astronomical Observatory Belgrade, Belgrade, RS
University of Szeged, Szeged, HU
Eötvös University, Budapest, HU
Blaise Pascal University, Clemont-Ferrand, FR
Eötvös University, Budapest, HU
Eötvös University, Budapest, HU
University of Szeged, Szeged, HU
University of Technology, Brno, CZ
ELTE GAO MKK, Szombathely, HU
Eötvös University, Budapest, HU
Dept. of Astron. of Eötvös University, Budapest, HU
ESA TIT, Szombathely, HU
Astron. Inst., Slovak Acad. of Sci., TL, SK
Eötvös University, Budapest, HU
Vasi TIT, Szombathely, HU
Eötvös University, Budapest, HU
Eötvös University, Budapest, HU
MTA CSFK Konkoly Observatory, Budapest, HU
MTA CSFK GGI, Sopron, HU
Eötvös University, Budapest, HU
University of Pavia, Pavia, ITALY
University of Szeged, Szeged, HU
MTA CSFK GGI, Sopron, HU
University of Szeged, Szeged, HU
MTA CSFK Konkoly Observatory, Budapest, HU
MTA CSFK Konkoly Observatory, Budapest, HU
MLA TIT, Szombathely, HU
Eötvös University, Budapest, HU
Eötvös University, Budapest, HU
Astron. Inst. of the Academy of Sci., Ondrejov, CZ
Eötvös University, Budapest, HU
MTA CSFK Konkoly Observatory, Budapest, HU
University of Szeged, Szeged, HU
Eötvös University, Budapest, HU
Eötvös University, Budapest, HU
Eötvös University, Budapest, HU
Universiyt of Split, Split, HR
University of Szeged, Szeged, HU
Astronomical Observatory Belgrade, Belgrade, RS
## Contents

### Preface

### Invited talks

Giuseppe Longo, Massimo Brescia: *The extraction of knowledge from massive astrophysical data sets* .................................................. 3

Petr Škoda, Pavla Bromová, Lukaš Lopatovský, Andrej Palička, Jaroslav Vážný: *Knowledge discovery in big astronomical spectra archives* . 11

Farouk Toumani: *Petasky: some query optimization challenges related to management of scientific data in the field of cosmology* ............. 17

Andrea Marinoni, Paolo Gamba: *Detection of local affinity patterns in big data* ................................................................. 27

Darko Jevremović: *Astroinformatics in Serbia – from small virtual observatory to involvement in LSST* ................................. 35

Gábor Horváth, András Barta, Pál Barta: *Automatic measurement of skylight polarization* ......................................................... 41

József Vinkó: *The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX): searching for supernovae among spectroscopic data* . 47

László Dobos: *Cross-matching the sky with database server clusters* . 53

Dejan Vinković: *Introduction to GPU coding* ........................................ 57

### Talks

Pavla Bromová, Petr Škoda: *Comparison of wavelet-based feature extraction techniques in classification of spectra of emission-line stars* 67

Andrej Palička, Petr Škoda: *Application random decision forests in astroinformatics* ............................................................. 73

Lukaš Lopatovský, Petr Škoda: *Application of self-organizing maps in astroinformatics* .......................................................... 77

Veljko Vujčić: *Use of complex event processing engines in astronomy* . 81

Jovan Aleksić, Veljko Vujčić, Darko Jevremović: *Alert Simulator – system for simulating detection of transient events on LSST* ........ 85

Tamás Nagy, Árpád Kis, István Lemperger, Viktor Wesztergom, Ernő Prácser, Károly Kovács: *The digitisation of archive telluric recordings* .................................................. 91
Posters


Borbála Cseh, Ákos Dózsa, Balázs Csák, László Szabados, József Kovács, Gyula Szabó: Long-term radial velocity monitoring of 26 bright galactic Cepheids ............................................................... 101

Zoltán Garai: Short-period Kepler exoplanet candidates: search for orbital period variations based on 17 quarter data ................................................................. 103

Jaroslav Vážný, Petr Škoda: Supervised classification of emission stars spectra ................................................................................................................................. 105

Ádám Egri, Mikkel Brydegaard, Gábor Horváth, Susanne Åkesson: Remote sensing of flying insects by dark-field detection with telescopes and opto-electronics: The Lund University Mobile Biosphere Observatory ................................................................................................................................. 107

Alexandra Kálmánczhelyi-Farkas, András Barta: Observing noctilucent clouds from Hungary with NLC wakeup application ................................................................. 109

Dénes Száz: Experimental study of the possibility of sky-polarimetric viking navigation ................................................................................................................................. 111

Károly Kovács, Tamás Nagy, Gabriella Sátori, Viktor Wesztergom, Pál Bencze, János Lichtenberger, Ernő Prácser, Katalin Gribovszki: Data acquisition system of the Széchenyi István Geophysical Observatory ................................................................................................................................. 113

Magyar nyelvű cikkek

Szabó M. Gyula: Égboltelmérési módszerek szerepe a Naprendszer vizsgálatában ................................................................................................................................. 117

Mészáros Szabolcs: Az APOGEE spektroszkópiai égboltelmérő program . 123

Vincze Ildikó: Gothard Jenő röntgensővei és röntgenfelvételei . . . . . . . 127

Csák Balázs, Dózsa Ákos: Gothard Jenő fotólemezeinek digitalizálása . . . . . . . 137

Kovács József: Foucault-ingakíséletek Szombathelyen 1880-2014 . . . . . . . 141

Conference photos