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ABSTRACT 

A mathematical model for the spatiotemporal description of a well-known 
psychophysical phenomenon, the cometlike afterimage effect (CLAIE), is presented. 
The CLAIE occurs when a bright circular light spot moves slowly in the peripheral 
human retina. Under these conditions, the leading edge of the dot looks circular, but 
the trailing edge becomes elongated like a comet’s tail whose length increases with 
speed and luminance, and the illusion is more prominent for photopic backgrounds. 
This cometlike motion smear is described on the basis of the temporal responsive- 
ness and adaptation of rods. The model is an extension of an existing neural model 
of M. N. Oguztiireli et al., with an additional term that allows prolonged saturation 
and long decay time following exposure to intense stimuli, and these effects are held 
responsible for the cometlike smear. The model predicts the response of photorecep- 
tors through a nonlinear ordinary integrodifferential equation, which includes known 
biophysical terms for response dynamics, adaptation, saturation, and kinetics of 
intermediate components of the phototransduction process. The introduction of a 
saturation coefficient into the neural equation makes it possible to distinguish the 
different saturation thresholds of the rod-and-cone system. Numerical determination 
of the stationary solutions and complete linear stability analysis of the improved 
neural equation are given for a neuron of second order, and some computational 
results are presented for phase flows around different singular points in the phase 
field. A computer simulation based on the improved neural equation is presented for 
modeling the development and features of the CLAIE as a function of the speed and 

MATHEMATICAL BIOSCIENCES 114:215-248 (1993) 

OElsevier Science Publishing Co., Inc., 1993 
655 Avenue of the Americas, New York, NY 10010 

215 

0025-5564/93/$6.00 



216 GABOR HORVATH ET AL. 

luminance of the stimulus and the background intensity. The computational results 
agree well with the psychophysical findings relating to the CLAIE. 

1. INTRODUCTION 

It is a well-known psychophysical phenomenon that a small circular 
light spot of high retinal illuminance level has a cometlike appearance 
when presented moving continuously at low speeds outside the fovea1 
region of the human retina [31. This perceived lengthening of the 
circular spot is hereinafter called the cometlike afterimage effect 
(CLAIE). 

In this work a nonlinear mathematical model, which can be inter- 
preted in known biophysical terms, is presented for the spatiotemporal 
description of the phenomenon of cometlike afterimage effects. The 
model is based on the neural equation developed by Oguztijreli et al. 19, 
10,13,14]. Although the Oguztoreli model can describe some well-known 
visual phenomena [lo], the photopic retinal afterimage visual illusions 
(the CLAIE, for example) based on prolonged saturation and slow 
temporal relaxation of the response of photoreceptors are beyond the 
scope of this model. 

After a brief sketch of the neurobiological and psychophysical back- 
ground of the CLAIE, the photopic retinal afterimage phenomenon is 
studied theoretically and computationally within the scope of 
Oguztiireli’s neural model. First the insufficiency of the original 
Oguztiireli neural equation for describing cometlike afterimages is 
demonstrated. Then the neural equation is complemented by an addi- 
tional term, which is responsible for the prolonged saturation and long 
decay time of the response of photoreceptors. Furthermore, a new 
saturation coefficient is introduced into the equation, which makes it 
possible to distinguish the different saturation thresholds of the retinal 
rod-and-cone system. 

The effect of this additional term of the temporal behavior of an 
isolated photoreceptor is theoretically and computationally studied. A 
computer simulation based on the modified neural equation is pre- 
sented for the spatiotemporal description of the development and 
features of cometlike afterimages as a function of the speed and 
luminance of the stimulus and background intensity. Finally, in the 
Appendix, numerical determination of the stationary solutions and 
complete linear stability analysis of the improved neural equation are 
given for a neuron of second order, and some computational results are 
presented for phase flows around different singular points in the phase 
field. 
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2. COMETLIKE AFTERIMAGE EFFECT: 
PSYCHOPHYSICAL BACKGROUND 

Electrophysiological measurements of rod receptor potential and 
intracellular recordings from receptor cells [4, 111 and direct photocur- 
rent measurements in isolated rod receptors 11, 81 show that when the 
stimulus intensity becomes sufficiently large, the response of rod recep- 
tors at a given stimulus duration saturates in amplitude and any further 
increase in intensity results in prolonged saturation and unusually long 
decay times after the offset of the stimulus. Slow movements of the 
retinal image do not cause a distortion of stimulus shape or a significant 
loss of spatial resolution over a considerable range of target speeds due 
to the time-resolving ability of the cone system [5]. 

An exception to this rule can be observed when a small ( N 0.5” in 
diameter) circular light spot of high retinal illuminance level moves 
continuously at a speed as low as = 0.3”/s, outside the fovea1 region of 
the human retina. Although the leading edge of the moving spot 
remains circular and is spatially well defined, its trailing edge extends 
into a long tail, which gives the spot a cometlike appearance. The length 
of the perceived comet increases with the retinal illuminance of the 
spot. 

The parametric variation and the retinal distribution of the CLAIE 
for different light spot and background stimulus conditions were com- 
prehensively investigated experimentally by Barbur et al. [31. The CLAIE 
is no longer seen for retinal illuminance levels of the spot stimulus that 
are either below a certain threshold value ( N 3 log trolands; 1 troland 
= 1 W/deg2) or less than the background field. Although the CLAIE is 
also present at very low background retinal illuminance levels, the 
strongest effect occurs when the test stimulus is presented against a 
background field of 2-3 log trolands, which is normally associated with 
photopic conditions of light adaptation. 

Changes in the spectral content of the stimulus or the background 
field has little or no effect on the retinal distribution of the CLAIE, 
which is only detected for wavelengths around the middle of the visible 
spectrum; this spectral region stimulates well both rod and red/green 
cone receptors. The increment threshold data show clear separation of 
spectral mechanisms and therefore the involvement of cone receptors 
too [3]. 

The two distinct features of cometlike afterimages, the sharp circular 
leading edge and the extended cometlike trailing edge, are observed 
only for very low speeds of movement, and in this velocity range the 
length of the comet tail increases with the speed of movement. For 
velocities greater than 3”/s these two characteristic features are gradu- 
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ally degraded, and at higher speeds the stimulus becomes an elongated 
spot. The CLAIE is seen even for stimulus speeds that are close to the 
absolute threshold limits for motion detection [2]. These observations 
suggest that the comet effect reflects very long decay times normally not 
associated with photopic vision 131. 

3. PHOTOPIC RETINAL AFTERIMAGES WITHIN 
THE SCOPE OF OGUZTijRELI’S NEURAL MODEL: 
DEMONSTRATION OF INSUFFICIENCY OF THE 
ORIGINAL EQUATION 

In a series of papers a general neural model has been developed and 
studied from a physiological, mathematical, and computational point of 
view by Oguztoreli et al. [9, 10, 13, 141. This neural network model is 
especially applied for modeling and simulating the vertebrate retina [9] 
and for some visual phenomena [lo]. In this section we demonstrate 
that photopic retinal afterimages (e.g., the CLAIE) cannot be described 
within the scope of the original version of this model. 

The continuous-time discrete-state space deterministic model [lo] is 
defined by a system of nonlinear ordinary integrodifferential-difference 
equations of the form 

IV.X,(t)=S 
aiO i 

fi(t)+ ~cijxj(t-qj) 
j=l 

(1) 

for the ith neuron, where t ( > 0) denotes time; n is the number of 
neurons in the network; mi + 1 is the “order” of the ith neuron, which 
gives the number of differential equations after (11 is transformed into 
the corresponding system of ordinary differential equations (see Section 
4.4); Xi(t) is the time-dependent normalized (0 < Xi < 1) electrical 
response or activity of the ith neuron; fi(t) denotes the time-dependent 
input to the ith neuron; aio ( > 0) is the rate constant characterized by a 
step change in input to the ith neuron producing an exponential 
approach from the initial value Xi(O) to a steady-state value & with the 
rate constant ajo; uik ( > 0) is a rate constant for the ith neuron; bi, is 
an adaptation or self-inhibition factor for the ith neuron when bi, < 0 
and is a self-excitation factor when bj, > 0 with the rate constant 
uik > 0; cij is the interaction coefficient between the ith and jth 
neurons representing inhibition when ci, < 0 and excitation when cij > 0; 
if the jth neuron is not connected directly to the ith neuron then 
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cij=O. cii=O for i=1,2 ,..., 12 since the self-inhibition and self-excita- 
tion in the ith neuron are characterized by the parameters bi, and aik; 
gij ( L 0) is the time lag of the ith neuron occurring in the transfer of 
the response of the jth neuron to the ith one; uii = 0 for i = 1,. . . ,n; 
and S{u} = l/(1 + e-“> is the normalized (0 < S < 1) neural transfer 
function that describes the fact that the response of a neuron saturates 
with large inputs because of its refractory period. 

Photopic retinal afterimages (the CLAIE, for example) reflect pro- 
longed saturation of rod responses and extremely long decay times after 
intense stimuli. Some aspects of the temporal behavior of an isolated 
photoreceptor can be described well [9, 10, 13, 141 by the original 
Oguztoreli neural equation (OONE) of the form 

&T.X(t)+ f(t)+ E b,lbX(+YM). (2) 
k=l 

In Figure 1 the results of a numerical simulation can be seen for a 
photoreceptor described by the OONE (21, the numerical solution of 
which is performed by the method of Gottwald and Wanner [6]. We 
progressively increased the amplitude f, (Figure 1A) and duration T 
(Figure 1B) of a rectangular input at zero background intensity fb = 0 
(moving light spot in darkness). Figure 1A shows that if one increases 
the amplitude of the input, the photoreceptor saturates above a critical 
value of f,; however, this saturation comes to an end as soon as the 
intense stimulus finishes, and the response quickly decreases with a 
short decay time. Similar temporal behavior can be seen in Figure 1B; 
that is, in spite of the increase of the external stimulus duration T, the 
saturated response of the photoreceptor decreases immediately and 
rapidly after the end of the intense stimulus. 

Taking this simulation into account and analyzing (2), one can 
establish that prolonged saturation characterized by increasing satura- 
tion time due to increasing amplitude and/or duration of the intense 
input and extremely long decay time cannot occur in the temporal 
behavior of a photoreceptor described by the OONE. The reason for 
this is that the end of the input f(t) in (2) results in a steplike decrease 
in the argument of the transfer function S{U}, thereby immediately 
producing an exponential approach with rate constant a, in the re- 
sponse X(t) of the photoreceptor from the saturated value 1 to a 
smaller steady-state value. 

Consequently the OONE is insufficient for describing photopic reti- 
nal afterimages characterized by prolonged saturation and long decay 
time of the response of photoreceptors induced by intense stimuli. In 
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the following section we show a possible way to improve (2) in order to 
be able to describe the phenomenon of photopic retinal afterimages. 

4. IMPROVED NEURAL EQUATION 

4.1. SATURATION COEFFICIENT 

Bearing in mind the photopic retinal afterimages, the most important 
difference between rods and cones is their different response ampli- 
tudes to a single photon. To describe mathematically the characteristic 
difference between the critical input amplitude required to produce 
saturation in rod and cone receptors, a new saturation coefficient w 
must be introduced into the neural transfer function S{u) as follows: 

sv(u, o} := 
1 

l+e-u/w’ w > 0. 

f s5 5 
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FIG. 1. Normalized responses X(t) of an isolated second-order (m + 1 = 2) reti- 
nal photoreceptor described by the OONE (2) with the parametric configuration 
a, = 100 s-‘, a, = 15 SC’, b, = -2000 s-’ to a series of rectangular external inputs 
f(t) of increasing amplitude f, (a) and duration T (b) at zero background intensity 
fb = 0 (moving light spot in darkness). (a) t, = ZOO ms, T = 600 ms, fsi = i Af,, 
i=l,..., 5, with Af,=40; (b) t,=ZOO ms, fs=200, tj=t,+(j-l)AT, j=l,..., 5, 
with AT = ZOO ms. It can be seen that there is neither prolonged saturation nor slow 
temporal relaxation of the response. 
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-10 0 10 

FIG. 2. Graph of neural transfer function .S?{u, w} for large (oA = 4) and small 
( og = 0.4) values of the saturation coefficient w. (A, B) Transfer functions of retinal 
cones and rods, respectively, in accordance with relation w,,~ a We_. 

The transfer function is the saturation stage of the model presented 
through which the transduction cascade passes before driving the re- 
sponse up. In Figure 2 the graph of S{u, o] is shown for a large (curve 
A) and a small (curve B) value of w. On the basis of (2) and (31, one can 
see that a photoreceptor with large w saturates only for much larger 
external input amplitudes than a receptor with smaller w. So retinal rod 
cells can be characterized by a much smaller saturation coefficient o,,~ 
than the cone cells (w,,,,), that is, 

4.2. STIMULUS HISTORIC TERM RESPONSIBLE FOR PROLONGED 
SATURATION AND LONG DECAY TIME OF 
RETINAL PHOTORECEPTORS 

Photochemical Background. In darkness a photoreceptor has an 
appreciable permeability to Na+ ions, which flow into the outer seg- 
ment of the receptor. This inward current is balanced by the outward 
current of K+ ions from the rest of the cell. When the rhodopsin 
molecules of a photoreceptor absorb light, the influx of Na+ ions is 
blocked, thereby reducing the dark current and resulting hyperpolariza- 
tion of the transmembrane [12]. 

In the dark the photoreceptors have a high concentration of cyclic 
guanosine monophosphate (cGMP), a substance that binds to pores in 
the surface membrane and opens them, allowing Na+ ions to enter. In 
the light the concentration of cGMP drops, cGMP leaves the binding 
sites, and the pores close [15]. 
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Three main steps intervene between the excitation of rhodopsin and 
the enzymatic cleavage of cGMP. When one of the two components of 
rhodopsin, retinal, absorbs a photon and the other component, opsin, is 
activated, rhodopsin in turn activates the enzyme tranducin. Transducin 
then activates a specific phosphodiesterase, which then opens the ring 
of cGMP by hydrolysis. The system behaves like a chemical photomulti- 
plier: absorption of a single photon by rhodopsin causes the rapid 
breakdown of hundreds of cGMP molecules and blocks the entry of a 
million Nat ions. Upon an increase in the light intensity, more and 
more cGMP molecules progressively break down, as a consequence of 
which more and more pores close, until finally all the pores close. At 
this stage there is total saturation of the photoreceptor [12, 151. 

Stimulus Historic Term. An appropriate mathematical formulation 
of the above photochemical saturation phenomena is to add a convolu- 
tion integral term 

SHT(r):=/f(r)SK(t-s)dr, 
to 

where 

I=1 

to the argument of the neural transfer function i{u, o} in (2). This term 
contains a sum proportional to the input (light intensity) and exponen- 
tial factors with rate constants C,O~ and coefficients cI, where time t, is 
the beginning of the stimulation and function SK(r) represents an 
M-step photochemical reaction kinetics underlying the chemical photo- 
multiplier mechanism of the prolonged saturation of photoreceptors. 
Function SHTCt) is proportional to the time-dependent concentration of 
the enzyme (activated by transducin molecules) cleaving cGMP, an 
enzyme that tunes the closing of pores and the blocking of the influx of 
Na+ ions to a brief flash. So the function SK(T) tunes the saturation of 
photoreceptors; therefore we call it the saturation kernel. 

Since term (5a) also depends on the earlier values of the input 
function f(r), in exponentially decreasing temporal participation-that 
is, on the history of the stimulus-we call it the stimulus historic term. 
Equations (5a) and (5b) are related only to stimulus. This makes the 
historic term a “feedforward” mechanism rather than a feedback mech- 
anism. The biophysical motivation for using multiple exponential terms 
in the function SK(r) is explained in Section 4.3. 
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The final form of the improved OguztSreli neural equation (IONE) is 

= l+exp 

-f(t) -C~=l,b,/,:X(7)e-at”-“d7 

-CIM_1cllr~f(7)e-‘P’(‘-“d7 

0 II 
-1 . (6) 

If there is an appropriate parametric configuration, the stimulus historic 
term ensures that the argument of the neural transfer function S{U, w} 
remains above the critical value required to produce saturation for a 
time that increases with the amplitude and/or duration of intense 
stimuli. Then it decreases very slowly after the stimuli stop. So the 
stimulus historic term can ensure prolonged saturation and extremely 
long decay time of the response of a photoreceptor cell, as will be 
shown later. 

4.3. SATURATION KERNEL 

If the function SK(T) in the form of (5b) has the schematic graph as 
represented in Figure 3 [that is, SK(T) rapidly reaches its maximum 
value at r*, after which it relaxes slowly], then its convolution SHnt) 

SATURATION 

% 

RELAXATION 

(au) 

FIG. 3. If the saturation kernel SK(r) in the IONE (6) has the schematic graph 
shown, then its temporal convolution with a rectangular input of, namely, the 
stimulus historic term SHlQ), can ensure the prolonged saturation and the slow 
temporal relaxation of the response X(t) of a neuron after the intense stimuli cease. 
au, arbitrary unit. 
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with input ensures the prolonged saturation and extremely long decay 
time of the response X(t) of a neuron after the end of intense stimuli 
for an appropriate parametric configuration. On the basis of Figure 3 
one can write 

SK(O) = 5 c, = 0, (7) 
I=1 

SK(r*) = ; Cje-‘P”* = @ > 0, (8) 
I=1 

dSK( r) 

[ 1 dT 7 = 7* I=1 

(9) 

Since the photochemical mechanism (the chain of molecular events 
leading to the reduction of cGMP) underlying the saturation of retinal 
photoreceptors consists of three steps [12, 151, the case A4 = 3 seems to 
be appropriate for the term SHflt) in the IONE (6). Using (7)-(91, 
three parameters can be determined from among the parameters (cl, pr) 
(I= l,..., MI of the function SK(r). From (7)~(91, one can obtain for 
the vector c = (c,,c,,c,), 

K = &E,( PO, - ~02) + E,E,( ~3 - cp,) + &E~((Pz - (~3), 

ei =l, vi = cPtEi? Ei = _+‘?*, i=1,2,3. (10) 

4.4. STATIONARY SOLUTIONS 

If one introduces the quantities 

Yk(t) :=lF(+-“@“dq k = l,...,m, (11) 

the nonlinear ordinary integrodifferential equation (6) can be trans- 
formed into the following system of ordinary differential equations: 

dWt) -= 
dt -q,X(t)+a,i f(t)+ 

i 
5 , 

k=l 

d&(t) -=X(t)-a,Y,(t), 
dt X(b) = XII, 

yk( 4)) = &I) = 0, k = l,...,m. (12) 
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After this transformation, (6) has the following form in the stationary 
case, that is, when t --, m, dX/dt = dY, /dt = 0, f(t I= f. = constant: 

ti = t/a,, k = l,...,m, (13) 

where & and .$ represent the stationary values of X(t) and Y,(t), 
respectively. One can see from (13) that the new introduced term 
SHT(t) modulates only the dynamics of a neuron so that the stationary 
solution 5 of (6) is the same as that of (2) if 

(14) 

The numerical determination of the stationary solutions and com- 
plete linear stability analysis of the ZONE are given in the Appendix for 
a neuron of second order (m + 1 = 2). Some computational results for 
phase flows around different singular points in the phase field of the 
OONE and the IONE can be seen in Figures 11-13 (see Appendix). 

5. PROLONGED SATURATION AS A SOLUTION OF THE 
IMPROVED NEURAL EQUATION 

Consider an isolated retinal photoreceptor described by the IONE 
(6) and stimulated by the rectangular input 

f(to<tttt,)=f, 

f(t1<t<t,+T=t2)=fs 

f(t2 <t) =fb 

which corresponds to a moving 

(background), 

(spot) 9 

(background), ( 15) 

light spot of strength f, at background 
intensity fb. In this case the stimulus historic term has the form 

SHT(t,~lar,)=f~~~~~[l-~-‘/r”.)], 
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In the limit f, + - ~0, the stimulus historic term has the simpler form 

If fb = 0 (stimulation in darkness), one can obtain from (17) 

(18) 

Analyzing (18), one can realize that factors fJ1 - exp( - cp,T)], I = 1,2,3, 
can ensure the prolonged saturation due to stimuli in darkness, because 
on the one hand the value of SHnt, + T) increases proportionally to 
the stimulus intensity f,, and on the other hand it increases exponen- 
tially with the”duration T of the stimulus. Therefore, the larger the 
argument of S(u, 01 at the moment the input stops [f(t& = 01, the 
larger the amplitude f, and/or duration T of the stimulus. As a 
consequence of this, solution X(t) of (6) remains for a while at the 
saturated maximum value 1 following the exposure to intense stimuli. 
This effect is the prolonged saturation. Then X(t) decreases only very 
slowly with extremely long decay time. 

In Figure 4 some results of a numerical simulation can be seen for 
the above photoreceptor. We progressively increased the amplitude and 
duration of the rectangular input in the same way as in Figures 1A and 
lB, respectively. Figure 4A shows that on an increase in the amplitude 
f, of the stimulus, the photoreceptor saturates above a critical ampli- 
tude, and this saturation does not come to an end immediately after the 
stop (at time I = t, + T) of the intense stimulus; in other words, it is 
prolonged. The saturation time increases progressively with the ampli- 
tude of the stimulus. An additional temporal feature is that the re- 
sponse decreases with a long decay time following the saturation. 
Similar temporal behavior can be seen in Figure 4B; that is, if the 
stimulus duration T is increased, the saturation time increases progres- 
sively after the end of the intense stimulus. 

The retinal photoreceptor system needs a certain time for adaptation 
to a given background intensity, as is well known from psychophysics 
and physiology [12, 151. During this adaptation period the response of 
photoreceptors reaches its steady state corresponding to the back- 
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-4 t, +T 

x(t I 

t A 

t B 

FIG. 4. Responses of an isolated second-order (m + 1 = 2) retinal photoreceptor 
described by the IONE (6) with the parametric configuration no = 100 SC’, al = 15 

s-l, b, = -ZOO0 s-l, cp, =(2 ms)-‘, ppz =(80 ms)-‘, cp,=(300 ms)-‘, T* =I8 ms, 
Q = 7.5 s-l, w = I to a series of rectangular inputs of increasing amplitude f, (A) 
and duration T (B) at zero background intensity f,, = 0 in the same way as those of 
Figures IA and IB, respectively. It is evident in both cases that prolonged SatUratiOU 

and slow temporal relaxation occur. 

ground illuminance conditions. During the computer modeling of the 
response of photoreceptors investigated, one can simulate this adapta- 
tion in the following two ways. 

(1) One takes an arbitrary initial value X0 for variable X(t) with 
t, +Z t, in (16) and solves numerically the system of ordinary differential 
equations (12) with f(t) = fb = constant until X(f) approaches its sta- 
tionary value ,$(fb). After this adaptation procedure one can begin the 
effective simulation for input (15) using (16). 

(2) One first solves numerically the transcendental equation (13) for 
E(fb) and the n b egins the simulation at time t = 0, solving (12) with 
X(0) = e(fb) and Y,(O) = e(f,)/a,, k = 1,. . ., m, for input (15) using 
(17). In this case one spares the adaptation period, replacing it by the 
quicker calculation of e(fJ. 
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FIG. 5. Intensity function f(z = ct, y) of a circular light spot moving with velocity 
vector u in the opposite direction to axis z as an external input of the two-dimen- 
sional retinal photoreceptor system investigated. R is the radius of the spot. 

6. SPATIOTEMPORAL DESCRIPTION OF THE CLAIE 

6.2. SPATIAL ACTIVITY PATTERN INDUCED BY A MOVING LIGHT SPOT 
IN DARKNESS 

To determine how the retinal image of a moving circular light spot of 
high retinal illuminance level becomes distorted, let us investigate the 
spatial activity pattern induced by this stimulus in a model retina. 
Consider a two-dimensional retinal rod system, the individual photore- 
ceptor cells of which are isolated lying in the (z = ut, y) plane of Figure 
5. The spot moves with velocity vector v in the opposite direction to axis 
z. First we investigate a moving light spot in darkness, that is, at zero 
background intensity f,, = 0. In this case all the rods placed on a line 
parallel to axis z at distance lyl G R, where R is the radius of the spot, 
receive the same temporal input, 

f(Y7T) = 0 if 7<7i(y) or T>T*(Y), 

f(Y77) =f, if T,(Y) <T <72(Y)> ( 19a) 

where 

T,(Y) = 
R-d_ 

u > TdY) = 
R+dm 

V > lyl G R, 

( 19b) 
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and the relative time r is measured from the moment the front of the 
spot crosses the abscissa of a given photoreceptor. 

Since the temporal response of isolated cells of the rod system 
investigated lying on a line parallel to axis z is the same (apart from 
being shifted temporally), the shape of the spatial activity pattern of the 
system induced by the moving spot does not change temporally (disre- 
garding an initial transition). The spatial activity pattern is shifted on 
the system only parallel to the velocity vector v, so it can be obtained 
from the series of temporal response functions X(t) of rods placed 
perpendicularly to the velocity vector u, using the transformation t -+ z 
= ut. Some results can be seen in Figures 6 and 7 for a rod system 
described by the OONE and the IONE, respectively, as a function of 
parameter w = u/2R. One can see that a photoreceptor system de- 
scribed by (2) cannot produce a cometlike afterimage (Figure 61, but a 
system based on (6) can (Figure 7). 

6.2. INFLUENCE OF THE BACKGROUND ON THE CLAIE 

So far we have investigated the cometlike afterimage effect induced 
by a moving circular light spot in total darkness, that is, when the 
background intensity fb = 0. Now we study the influence of fb on the 
CLAIE. In Figure 8 the spatial activity pattern can be seen for a series 
of intensities fb with the velocity at which the comet tail in darkness is 
the longest (see Figure 7B) for a given f,. Figure 8 shows that if the 
background intensity fb ( < f,) is increased, the cometlike afterimage 
becomes more developed, and the comet tail increases progressively; 
however, for larger values of fb the elongated spatial activity pattern 
merges gradually into the background and loses its cometlike appear- 
ance. 

6.3. INFLUENCE OF THE STIMULUS AMPLITUDE ON THE CLAIE 
IN DARKNESS 

The precondition for cometlike afterimages is the appropriately high 
retinal illuminance level of the moving circular light spot. Therefore it is 
worth investigating the influence of the stimulus amplitude f, on the 
CLAIE in order to answer the question: How does the cometlike 
afterimage develop in darkness when the illuminance level of the light 
spot increases gradually at a given velocity? Some results are shown in 
Figure 9. One can see that on gradually increasing the stimulus strength, 
the cometlike afterimage forms above a certain value of f, (Figure 9E) 
and becomes more characteristic; it then turns into an elongated spot 
(Figure 9G) for very intense stimuli. 
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B 

i 

c 

FIG. 6. Spatial activity pattern (SAP) of a retinal rod system described by the 
OONE (2) as a function of parameter w = u/d, where u is the velocity of the light 
spot of diameter d = 1 mm. Parametric configuration: a,, = 100 s-l, a, = 12.5 SK’, 
b, = -4000 s-‘, f, = 300, f,, = 0. Left: Three-dimensional view of the SAP. Right: 
Two-dimensional contour map generated by intersecting the SAP by a series of 
planes parallel with the (y, z) plane. The plateau (dotted) represents the saturation 
of the photoreceptor system. (A) w = 2 s-‘, (B) w = 4 s-t, (C) w = 12 s-‘. In spite of 
the saturation of the photoreceptors, prolonged saturation and slow relaxation 
underlying the CLAIE do not occur. 

7. DISCUSSION AND CONCLUSIONS 

In this work a special, cometlike photopic retinal afterimage effect is 
theoretically and computationally investigated. Photopic retinal afterim- 
ages are characterized by prolonged saturation with increasing satura- 
tion time due to increasing amplitude and/or duration of the intense 
input and extremely long decay time of rod responses after stimuli of 
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FIG. 7. Spatial activity pattern for a rod system described by the IONE (6) with 
the parametric configuration a,, = 100 s-l, a, = 12.5 s-‘, b, = -4000 s-l, o = 1, 
a=8 s-‘, ~*=18 ms, tp1=(2 ms)-‘, (pz=(80 ms)-‘, cp,=(300 ms)-‘, fs=300, 
f,, = 0. (A) w = 1 s-l, (B) w = 4 s-l, (C) w = 6 s-l, (D) w = 7 s-l, (El w = 9 s-l. The 
prolonged saturation and slow relaxation of the photoreceptors responsible for the 
CLAIE can be well seen. 
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FIG. 8. Spatial activity pattern of the photoreceptor system of Figure 7 with 
f, = 300 and w = 4 s-’ for a series of background intensities fb. (A) fb = 10, 03) 
f,, = 30, (C) f,, = 50, (D) fb = 60. 

high retinal illuminance levels. The cometlike phenomenon has two 
distinct features: a sharp, circular leading edge and an extended comet- 
like trailing edge induced by an intense moving circular light spot. 

The basis of the mathematical description of the cometlike afterim- 
age effect (CLAIE) is Oguztoreli’s neural model developed for the 
modeling and simulation of the vertebrate retina. Since prolonged 
saturation and slow temporal relaxation cannot occur in the temporal 
behavior of a photoreceptor described by the OONE (2) (Figures 1 and 
6), its modification is necessary for describing the CLAIE. 

(i) A new saturation coefficient w is introduced into the neural 
transfer function (3) to describe the different saturation thresholds of 
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FIG. 9. Spatial activity pattern of the photoreceptor system of Figure 7 with 
fb = 0 and w = 4 s-’ for a series of stimulus amplitudes f,. (A) f, = 50, (B) f, = 100, 
(C) f, = 150, (D) f, = 200, (E) f, = 250, (F) f, = 350, (G) f, = 500. 

the input amplitude of retinal rod and cone photoreceptors using the 
relation w,,~ 4 o,,,,. 

(ii) A new additional term, (5a), called the stimulus historic term 
(SHT), is introduced into the IONE (6). This term is responsible for the 
prolonged saturation and long decay time of the response of retinal 
photoreceptors after intense stimuli. In the stimulus historic term, a 

saturation kernel SK(r) (5b) represents the (M=3)-step photochemical 
reaction kinetics underlying the chemical photomultiplier mechanism 
(the chain of molecular events leading to reduction of cGMP) of the 
saturation of photoreceptors. 
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FIG. 9. (Continued) 

(iii) Under condition (14) the additional stimulus historic term intro- 
duced modulates only the dynamics of a neuron; that is, the stationary 
solutions of the IONE (6) are the same as those of the OONE (2). 

The problem of how spatial interaction between receptors influences 
the results of the present investigation is beyond the scope of this paper. 
However, Barbur et al. [3] showed that a rod-cone interaction underlies 
the cometlike afterimages. The effect of the cones on the CLAIE is to 
sharpen the circular leading edge. This kind of interaction is not 
considered in this work; we studied the spatiotemporal activity pattern 
of the retinal rod system only. 

Equation (6) is applied to the spatiotemporal description of the 
CLAIE. The results of our computer simulations are in accordance with 
the experimental, psychophysical findings of Barbur et al. 131 on the 
cometlike phenomenon. Barbur et al. [3] also made a model simulation 
for describing the CLAIE, using a convolution technique. Contrary to 
their model, our model seeks to describe the cometlike motion smear of 
moving dots by means of a nonlinear ordinary integrodifferential equa- 
tion for the response of photoreceptors. Of course, our model can be 
improved by taking into consideration rod-cone interaction to model 
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the sharpening effect of the cone system on the circular leading edge of 
the retinal image of the stimulus, but this is out of the scope of the 
present paper. 

The disadvantage of the Barbur et al. [3] model is that it uses definite 
temporal response functions to predict the cometeffect, and therefore 
the model is rigid with respect to the modeling of other visual phenom- 
ena. The OONE and the IONE used in this work, however, can 
describe well a series of well-known visual phenomena [lo]. 

Although one must not preclude the possibility that the cometlike 
smear also involves postretinal mechanisms, the presented model and 
the earlier Barbur et al. [3] model demonstrate that the CLAIE can be 
explained well by retinal mechanisms at the level of photoreceptors; 
that is, cometlike afterimages may develop in early vision. 

The results of our computer simulations based on the IONE (6) are 
summarized as follows. 

(iv) It is shown that prolonged saturation with increasing saturation 
time and long decay time due to increasing amplitude and/or duration 
of intense stimuli can occur in the temporal behavior of a photoreceptor 
described by the IONE (Figures 4 and 7). 

(v) The shape distortion of the perceived image of a moving circular 
light spot of high retinal illuminance level in darkness is studied as a 
function of its velocity. Distortion of shape is represented by the spatial 
activity pattern of the retinal rod system (Figure 7). If one increases the 
velocity u of the light spot, the two distinct features of the cometlike 
afterimage, the sharp circular leading edge and the extended cometlike 
trailing edge, gradually develop. The length of the comet tail increases 
with u. For larger values of U, these characteristic features are gradually 
degraded and the retinal image becomes an elongated spot (Figure 7). 

(vi) The influence of the background intensity fb on the CLAIE is 
investigated. On increasing fb, the comet tail increases progressively, 
and for larger values of fb ( < f,> the elongated spatial activity pattern 
merges gradually into the background and loses its cometlike appear- 
ance (Figure 8). 

(vii) The influence of the stimulus strength f, on the CLAIE in 
darkness is studied. On gradually increasing f,, the cometlike afterim- 
age forms above a certain value of the stimulus amplitude and becomes 
more characteristic. Eventually it turns into an elongated spot for very 
intense stimuli (Figure 9). 

(viii) The spatial activity pattern of our simulations (Figures 7-9) has 
a plateau at the level X(t) = 1 followed by a slowly relaxing long trail. 
The plateau and its shape correspond to the cometlike retinal afterim- 
age. The long trail corresponds to the much paler and gradually blurring 
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elongated smear perceived after every moving intense light spot, which 
is the most characteristic feature of photopic retinal afterimages [51. 

On the basis of the linear stability analysis of the IONE and the 
computationally determined phase flows around different singular points 
in the phase field for a second-order neuron (m + 1 = 2), the following 
can be concluded (Appendix, Figure 10-13): 

(ix) If b, < 0, there is always one stationary solution S( [,e,) of the 
IONE (Figures 10 and 12) along the straight line t1 = ,$/a, in the 
phase field for a given input f. If w < hC = - a,b, /(al - ~7,)~ and 
a, # a,, the singular point S( c,t,) is an asymptotically stable node-if 
0 G 5 < 4, or t2 < 5 =z 1, an asymptotically stable focus if 5, < 5 < h;, 
and an _asympto$cally stable one-tangent node if 5 = 5, or 5 = t2, 
where e, and E2 are expressed by (34) (Figure 12). If w = CT+, the 
region of the asymptotically stable focus disappears in the phase field, _ _ 
and 5, = e2 = l/2. If w > hC, every singular point is-an asymptotically 
stable node. If a, = a,), then ijC = +“, ,$I = 0, and t2 = 1. In this case 
the points S,( 5 = 0, 5, = 0) and S,( 6 = 1, 5, = l/a,) are asymptotically 
stable one-tangent nodes, and every other singular point is an asymptot- 
ically stable focus. 

(x) If b, > 0, there are one, two, or three stationary solutions of the 

IONE positioned on the straight line 5, = (/a, in the phase field for a 
given input depending on f and w (Figure 10). If w < GC = b, /4a,, th,e 
stationary solution S( r,[, > is an asymptotically stabje node if c < 8 < 5, 
or t2 < 5 < 1, an indiffer?nt singujar point it 5 = 5,” or 5 = E2, and an 
unstable saddle point if 5, < 5 < t2, where 5, and c2 are expressed by 
(39) (Figure 13). In this case there can be one, two, or three different 
singular points for a given input depending on f (Figures 10 and 13). If 
w = GJ,, the region of the unstable saddle point disappears in the phase 
field, and 5, = c2 = l/2. If w > LjC, every singular point is an asymptoti- 

cally stable node. In the latter two cases there is always one stationary 
solution for a given input (Figures 10 and 13). If a, = a, and 5 = 0 or 
.$ = 1, the singular points S,( 5 = 0,5, = 0) and S,( 5 = 1,5, = l/u,) are 
asymptotically stable one-tangent nodes. 
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APPENDIX. LINEAR STABILITY ANALYSIS OF THE IONE 
FOR SECOND-ORDER NEURONS AND PHASE FLOWS IN 
THE PHASE FIELD 

Al. NUMERICAL DETERMINATION OF THE STATIONARY SOLUTIONS 

From (13) one can obtain the relationship between the input f and 
the corresponding stationary solution (or singular point) 5, 

O<(<l. (20) 

From a physiological point of view it is pertinent to suppose that 

jim0f’(5)=+m, iimif’(t)=+m, 
+ 

(21) 

which is satisfied if x1 > - 1. 
If Z2 < 0, then f’( 6 I> 0 for all ,$’ E [O, 11, so there is only one 

stationary solution &, for a given input f0 (Figure lOA). 
If Z+$>Oand o&3,=&/4,then f’(e)>Oforall eE[O,ll,and 

f’(1/2) = 0, so there is only one stationary solution &, for a given input 
f,, (Figures 10A and 10B). 

If C, > 0 and w < &, then 

From Figure 1OC one can read that 

(22) 

f’(t)>0 ifO<5<i1 or i2<5<1, 

f’(C)<0 if i, < 5 < & . (23) 
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c D 

FIG. 10. Schematic representation of graph f(S) describing the relationship 
between input f and the corresponding stationary solution 5 of the IONE. (A) 
w > &,, (B) w = Q, (0 w < ijc. (D) Three-dimensional representation of function 

fCS, WI. 

Then there are three different stationary solutions if f( ix) = fi < f0 < 
fi = f( g,), there are two different singular points if f,, = f, or f,, = f2, 
and there is only one if f. > fi or f,, < f2 (Figure 1OC). 

From (13) we obtain 

G(g),+-?exp - 
[ 

(1+~1)fo+~~* 
w l- (24) 

Using (13) and (24), one can numerically determine .$ by means of the 
Newton tangent method, that is, using the recursion 

5i+l= 5i -G( 5i)/G’( 4) (25) 

with a given initial value 5 . (‘) The three-dimensional representation of 

graph f(e, w) is shown in Figure 10D. 

,42. LINEAR STABILITY ANALYSIS OF THE IONE 

In this chapter we follow Verhulst [16] in performing the linear 
stability analysis of the IONE. 
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Linearization of the ZONE. The improved Oguztoreli neural equa- 
tion (6) or (12) has the following form in the stationary case: 

-5+~{(l+C,)f+SC,,w}=o, & = t/a,, k =l,...,m. 

(26) 

Using the Taylor approximation, we obtain 

In the vicinity of a singular point S = (5, tk) of the phase field we 
can write 

X(t) = e +x(t), Yk(t) = tk + Ykct), 

Ix(t)1 * 5, bk(t)l * ‘tk, k =l,...,m. 

After linearization of the IONE we obtain 

(28) 

E b,y,( t), 
k=l 

dYk(t) 
-=x(t)-akYk(t), dt k =l,...,m. (29) 

From this one can write 

dY(t) 
- = AY(t), dt A= 

- a0 aoh& a,hb, **. a0h?l 

1 - a1 0 . . . 0 

1 0 -a2 *** 0 
. . . 

1 ;, ;, . . . -;, 

h= t(l- 0 
w 7 
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with the characteristic equation 
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det(A- AI) = 0, (31) 

where I is the identity matrix. 

Case of Second-Order Neurons. The characteristic equation of sec- 
ond-order neurons with m + 1= 2 is 

A*-TA+D=O, (32a) 

with 

T=-(a,+a,)<O, 1 . (32b) 

The solutions of this characteristic equation give the eigenvalues of 
matrix A, 

A 
T&\/T2-40 

1,2 = 2 . (33) 

A3. CLASSIFICATION OF THE SINGULAR POINTS 

Case T2 - 40 = 0 (T # 0). This case is satisfied if 

lB<CGi,E- aob, 
(a, -aO)* >O 

and 

55 = l,,, = 
l+\/l+ w(al -a,)*/a,b, 

2 

and 

(34a) 

(34b) 

or 

b, > 0 and 

b, < 0, (35a) 

a0 = a, and t=O or .$=l. (35b) 
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Then 

A, = h, = 

with 

x(t) = (x0 + c,t)e”‘, 

a1 - a0 
c, = -c2, 2 

x,=x(t=O), 

In this case the singular point 
one-tangent node (Figure 11A). 

Case T2 - 40 > 0 (T # 0). 

(I) D > 0: This case is satisfied 

A=T/2<0, (36) 

y(t)=(y,+c~~)e”‘, (37a) 

a1 - a0 
c2=xg-Y0~, 

y,=y(t=O). (37h) 

S( ,c,(,) is an asymptotically stable 

if 

w<ijC and b,<O and O<.$<$, or iz<5<1, (38) 

or 

WG&=$ and b,>O and O<&<$, or i2<t<l, 
1 

i,,2=1/2Td1/4-~a,/b,. (39 

Then 

with 

A, < 0, A, < 0, (40) 
x(t) = clehl’ + czeh2’, y(t) = clKleA1’ + c2K2eA2’, (41a) 

- 
'l= 

Yo - &x0 4x0 Yo 
K, -K, 7 ‘2 = K, _ K, 7 

Kl,2 = 0 

a0 (a,-ao)2+4aob,5.(1- 8)/o 
2aob,5(1- 0 . (41b) 

In this case the singular point S( cJ,,$,) is an asymptotically stable node 
(Figure 11B). 

(11) D < 0: This case is satisfied if 

O-CC& and b,>O and 5v1<e<fz. (42) 

Then 

A, > 0, A, < 0 (43) 
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ONE-TANGENT NODE 

A ’ r; = r”2 = 0.5 1 

1 INDIFFERENT SINGULAR POINT 1 

c 
r; = 62 = 0.5 
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I : ASYMPTOTICALLY STABLE NODE 

111. ASYMPTOTICALLY STABLE NODE 

5163 

B 

1 ASYMPTOTICALLY ST.4BLE FOCUS ] 

h -0 & =l 
D 

FIG. 11. Phase flows around different singular points in the phase field (X, Yi) of 
the OONE. (A) Asymptotically stable one-tangent node S(& = 0.5, 51 = 0.025) 
positioned on the straight line 5, = .$/a,. Parametric configuration: aa = 50 s-‘, 
a, =20 s-1, 6, = -2000 s-1, o = Oc = 111.11, f = 50. (B) I, asymptotically stable 
node S,( 5 = 0.0064, 5, = 0.0004); II, unstable saddle point Su( 5 = 0.5, 6, = 0.0357); 
III, asymptotically stable node S,,,( 5 = 0.9935, 5, = 0.0709). Parametric co@Wra- 
tion: a, = 50 SK’, a, = 14 s-‘, b, = 10,000 S-‘, o = 70, f = - 357.1. (C) Indifferent 
singular point S([ = 0.5, 5, = 0.0357); a0 = 50 SC’, U, =14 S-‘, 6, =10,000 S-‘, 

w = ,& = 178.57, f = -357.1. (D) Asymptotically stable focus S( 6 = 0.5, 5, = 0.025); 
a,) = 50 s -1, a,=20s-‘, b,=-20ooS~‘, w=l,f=50. 



SIMULATION OF RETINAL COMETLIKE AFTERIMAGES 243 

with x(t) and y(t) as in (41a). In this case the singular point S( t,,$,> is 
an unstable saddle point (Figure 11B). 

(III) D = 0: This case is satisfied if 

Then 

with 

5 = i,,, and b,>O and WG&. 

A, = 0, A, = T < 0, 

x(t) = c, + cze”2’, y(t) = cg + c4ehZ’, 

cl = a, x0 + yoao 
a0 +a, ’ 

ca = a, x0 - Yoal Cl 

a, +a, ’ 
cg=-, 

a1 

y(x)=y,+Z-t. 

(44) 

(45) 
(46a) 

c2 
cd=---, 

$ib) 

(47) 

In this case the stationary solution S( S, tl) is an indifferent singular 
point (Figure 110. 

Case T2 - 40 < 0 (T # 0). This case is satisfied if 

Then 

(48) 

A,,, = REf iIM, RE-;<O, 

(49) 

x(t) =A,eRE’sin(IMt + qx), y(t) = A,eRE’sin(IM t + 40,), 

(50a) 

with 

qx = arctan xo 
( 1 Cl 

7 q, = arctan 3 
( 1 cz 

, 

c 
1 

= oxoh - a01 +2a0blyo5(l- 5) 
20IM 7 

c,(a,-a,)-2x,IM 
c2=” 2a,b,5‘(1-5) . (5Ob) 
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In this case the singular point SC (,E, 1 is an asymptotically stable focus 
(Figure 1 lD>. 

Stability Regions and Phase Flows in the Phase Field 

(I) If b, G 0, then C, = b, /a1 G 0 is satisfied, so there is always only 
one stable singular point to for a given input f,,. The singular point is 
positioned along the straight line t1 = (/a, in the phase field (X, Y,> 
(Figure 12). The stability character of the singular point varies in the 
different regions of the phase field as can be seen in Figure 12. The 
boundaries of these stability regions are determined by i,,, depending 
on w. 

From (34) it follows that if a, # a,,, then 

if WCC!%,, then 0-~~,<1/2;1/2C$~Cl, (51) 

if w=OC, then 4, = l2 = l/2, (52) 

if w> I%,, then g,,, E C. (53) 

But if a, = a,, then 

;;,=+w and &=o; &=l. (54) 

If (51) is satisfied, the phase field with phase flows is represented in 
Figure 12. If (52) is satisfied, the central region of the asymptotically 
stable focus disappears, at SC& = l/2, (r = 1/2a,) there is an asymptot- 
ically stable one-tangent node, and every other singular point is then an 
asymptotically stable node. If (53) is satisfied, the asymptotically stable 
one-tangent node disappears also, and every singular point is an asymp- 
totically stable node. If (54) is satisfied, there are two asymptotically 
stable one-tangent nodes at the points S,( 6 = 0, t1 = 0) and S,( 5 = 1, 5, 

= l/al), and every other singular point is an asymptotically stable 
focus. 

(II) If b, > 0, then there are one, two, or three different singular 
points for a given input depending on f,, and o. The stability character 
of the singular points can be seen in Figure 13. The phase field consists 
of different stability regions, the boundaries of which are determined by 
(,,2 depending on w. From (39) it follows that 

if o-C&, then 0 < j, < l/2; l/2 < iz < 1, (55) 

if w=ijC, then $, = $* = l/2, (56) 

if w> G,, then $,,, EC. (57) 
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0 

0.5 ii 

FIG. 12. Phase field (X,Y,) of the IONE with the parametric configuration 
a, = 100 s-1, a, =12.5 s-i, b, = -4000 s-l, w=40<&=52.244, (p,=500 s-‘, 
cp,=12.5 s-‘, cp,=3.3333 s-l, @=8 s-l, T* = 18 ms. The singular point S( 5, tl) 
for a given input fa is positioned on the straight line t1 = (/ai. The lower part of 
every inset along this line represents the phase flow around the corresponding 
singular point, and the upper part shows the graph f(t). On the graph f( 0, input 
fs is represented by a horizontal line and the corresponding stationary solution by a 
dot. 
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0 
I I- 

O CL 0.15 J2 1 

FIG. 13. Phase field (X,Y,) of the IONE with the parametric configuration 
a,=100 s-‘, a,=12.5 SC’, b,=lO,OOO s-‘, w=100<ij,=200, cp,=500 s-1, 
(p2 = 12.5 s-’ , (p3 = 3.3333 SC’, 0 = 8 SC’, T* = 18 ms. In this case there are one, 
two, or three different stationary solutions for a given input fa. In the upper part of 
every inset, the singular points are represented by circles. In the lower part of the 
insets, the phase flow belonging to the singular point, which is represented by a black 
circle, can be seen. 
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If (55) is satisfied, the phase field with phase flows is represented in 
Figure 13. Then there are one, two, or three different singular points 
depending on the value of input f,,. One can see in Figure 13 that in 
this case the phase field consists of a central unstable region and two 
peripheral stable regions. In the central region the singular points are 
unstable saddle points, and in the peripheral regions they are asymptoti- 
cally stable nodes. At the boundaries of the stable and unstable regions 
the stationary solutions are indifferent singular points. 

If (56) is satisfied, the central unstable region of the phase field 
disappears, the point SC5 = l/2, e1 = 1/2a,) is an indifferent singular 
point, and every other stationary solution is an asymptotically stable 
node. If (57) is satisfied, every singular point is an asymptotically stable 
node. In the latter two cases there is always only one singular point for 
a given fo. If a, = a,, the singular points are S,([ = 0, ,$I = 0) and 
S,(5 = 1, 51 = l/a,>, and they are asymptotically stable one-tangent 
nodes. 
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