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A simple geometrical model is given for the resistivity increase of a thin conducting film considering
the size effect. The results of the model agree well with the results of the Fuchs-Sondheimer non-
geometrical theory.

Es wird ein einfaches geometrisches Modell fiir den Widerstandsanstieg einer diinnen Leiter-
schicht unter Beriicksichtigung des GroBeneffekts angegeben. Die Ergebnisse des Mcdells stimmen
gut mit den Ergebnissen der nicht-geometrischen Fuchs-Sondheimer-Theorie iiberein.

1. Introduction

Because of the size effect the mean free path of conduction electrons is shortened
in very thin conducting films. If the thickness of the film is commensurable with the
mean free path (m.f.p.) of the electrons in a bulk material, the electrical resistivity
increases because of diffusive scattering and reflection of the electrons at the film
surfaces.

The theory of the size effect is elaborated by Fuchs [1] for the free-electron model
and a spherical Fermi surface. This theory is developed by Price [2] for ellipsoidal
Fermi surfaces. Sondheimer [3] elaborated the Fuchs theory for the explanation of
the galvanomagnetic effects.

On the basis of the Fuchs-Sondheimer theory some expressions can be derived for
the electrical conduction of thin conducting films, which can be used well in practice
[4]. These expressions agree well with the experimental results [5 to 8].

The size effect occurs practically for all very thin films because they have an insulat-
ing (oxide) layer or an adsorbed gas layer on their surface in general, and the scattering
of the electrons at the film surfaces is partly or totally diffusive [5 to 8]. The influence
of the adsorbed gas layer on the resistivity of the thin metal films is examined by
Finzel et al. [15].

The size effect appears in the multifilamentary superconducting composites too in
their normal state if the filaments are appropriately close to each other, and the
normal resistivity of the filaments is much larger than the resistivity of the matrix
[9 to 14]. The resistivity increase caused by the size effect for the longitudinal resist-
ance of the multifilamentary superconducting wires, tapes in normal state, causes
a surplus resistivity [9 to 12]. A model is given by Cavalloni et al. [13, 14] to calculate
the influence of the size effect on these multifilamentary systems.

In the granular superconducting composites the size effect plays a greater role in
the normal state than in the continuous filamentary superconducting composites
because in the granular composites there are small grains or short filaments with

1) Puskin u. 5—7, H-1088 Budapest VIII, Hungary.

36 physica (a) 110/2



550 G. HorvAiTH and J. BANKUTI

random distribution [16]. In such percolative systems these filaments can be very
close to each other, and so the resistivity of the very thin matrix layers between
these very close filaments can hardly increase in the normal state. The normal resist-
ivity nevertheless plays an important role in the stabilization of the superconducting
state of multifilamentary wires [16].

The size effect occurs in every polycrystalline metal, too, because the resistivity
of the grain boundaries is larger than the resistivity of the crystallite. The resistivity
increase in this case is not significant, because the difference between the resistivity
of the crystallite and the grain boundary usually is small [17 to 19].

In this work a simple geometrical model is devised to calculate the resistivity
increase as a consequence of the size effect. We examine conducting films with parallel
surfaces which have insulating layers or adsorbed gas layers on their surfaces. We
suppose that the electrons are scattered totally diffusively on the boundary surfaces
of the film. We compare the results of our model to the results of the Fuchs-Sond-
heimer non-geometrical theory.

2. Size Effect of a Thin Condueting Film between Insulating Layers
In the free-electron model the resistivity is
0 = me|(ne2) , (1)

where m,, ¢, n, v, and 4 are the mass, the charge, the volume concentration, the mean
velocity, and the bulk mean free path of the electrons, respectively. If the conductor
has a finite extension in an insulating medium, then in the proximity of its surface
the electron m.f.p. decreases because of the diffusive electron scattering on the
scattering centres of the surface, and so the resistivity increases. This effect is called
the size effect by us.

Our geometrical model to calculate this resistivity increase is a conducting film
between two parallel insulating layers with infinite resistivity. Because of the in-
finite resistivity of the insulating layers the conduction electrons cannot be scattered
beyond the boundaries of the film. Imagine a sphere with radius 2 around the electrons,
named A-sphere in this work. In general the electrons are scattered if they have reached
this sphere surface. In a homogeneous, isotropic bulk material the electron m f.p. is
isotropic because of the infinite extension. However, in a very thin conducting film
between the above-mentioned insulating layers the boundary surfaces can cut a
spherical calotte out of the A-sphere. So the m.f.p. becomes direction dependent,
namely in parallel to the insulating layers it does not change, but perpendicularly it
decreases.

The average of this direction dependent m.f.p. can be calculated. Such a A-sphere
has a cylindrical symmetry with respect to the axis T going through the examined
electron and perpendicular to the insulating layers (Fig. 1), so it is enough to make
an average for the main section.

Consider an electron at a distance ¢, and 7, from the film surfaces. In this case the
average of the mean free path is

% o B /2 /2
A=1[[2d0 4 [2d0O 4 [ (t/sin 0) O - [ (ty/sin 0) AO] 72 (2)
0 0 « B

taking into account the notations of Fig. 1. Performing the integration we get from (2)

=[x+ p) — tyIntg(x/2) — (D — &) Intg (B/2)] =7, (3)
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: | ) Fig. 1. The A-sphere in a thin conducting film bet-
insulator|  conductor insulator ween two parallel insulating layers
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where D is the thickness of the film. Let us introduce the following dimensionless
quantities:

Q=D|2)), x=4bt/A, 1=2»AA. (4)

In the case of very thin films both the boundary surfaces cut the A-sphere. In the
case of thicker films such special arrangements exist when only one or none of the
surfaces cuts the A-sphere. Taking these arrangements into consideration the average
of I depends on the quantities @ and x as follows:

1. ifQ > 1 and

0sz<1, then ! =[x + n/2 — xIntg (x/2)]n 1=,

1 <<x<2Q—1, then I =1

20— 1<2<2Q, then I=[f1+n2— (2Q—2)IntgB2)]at=1
2.if1/2=Q <1 and

029 — 1, then [ =1,
20 — 1 <x<1, then I =[x+ f — xIntg(x/2) — (2Q — x) X
x Intg (B/2)] =1,
1 =220, then [ =1,
3.ifo=Q=1/2, then 1 =1, (5)

If the conductor surrounded by the insulator with infinite resistivity has no parallel
boundaries, we must average A for the residual i-sphere without the part(s) cut off
by the boundary surface(s).

The functions l(x, @) and I"1(x, Q) are plotted in Fig. 2a and b. As we can see at
larger values of @ the average of the electron m.f.p. decreases only in the proximity
of the surfaces. The onset of the decrease is at the distance 4 from the insulating
layers. For distances larger than 2 the average is equal to the bulk m.f.p. Accordingly
for large @ the average resistivity increases in the proximity of the surfaces and for
small @) the increase is extended over the whole film.
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Fig. 2. a) The dependence of the dimensionless mean free path | = A on & = t,/i and Q = DJ(27).
b) The dependence of the dimensionless resistivity =* on « and

The average resistivity of the film is
el =@ .?[Q(x)]_l de . (6)
Using (1) and (6) v:e get
et = (QQ)““}) U(x) da (7)

where the functions g(x), I(x) are symmetrical. Using (4), (5), (7) we obtain the follow-
ing expressions:

L0<Q<1)2

|

Q
arc sin x)

1= (oQm)? f{arc sin @ + arcsin (2Q — x) — x In tg (—~ =

0

(20 — o) Intg [ﬂzsif%£?9:1>]} do =
Q -
= (pQm) ! f F(x) da.
0
2.1/2<Q <1 (8)
201 '
o l= (QQ,’I)’I{J‘ [:1/2 + arcsinx — x In tg <7a¥'c im %>] do +
0
Q 2Q0-1 Q

+ fF(x) dx}z (QQn)*l{ f G(x) do -+ f F(x) dx}.

2Q—1 0 2Q—-1

3.0=1
1
61 = (@) [ [ G(a) da + | da]
0 1
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T T Fig. 3. The dependence of g/p on @
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Integrating (8), the average resistivities are

1.0<Q <12

g - (QQn)ﬂ{g(l — 4Q)12/2 — (1 — @2)12 — 1/2 + 2Q arc sin (2Q) —

_age ln[ 1 — (10; 4Q2)1/2 ]}
oo =1+ (22Q — 1)7*. (9)

The calculated p/p is plotted against ¢ in Fig. 3.
On the basis of the Fuchs-Sondheimer non-geometrical theory, the resistivity ratio

0lo =1+ 3/(16Q) = 1 + 0.1875/Q ; Q>1, (10)
0o~ —4/3QInQ) = —1,3330/QInQ); 0<Q<1

can be obtained [1 to 4] if the scattering of electrons is totally diffusive at the film
surfaces. From (9) we get

oo =1+ 1/2aQ) =1+ 0.1590/Q ; @ >1, (11)
olo = —n/(2QIn Q) = —1.5710/(Q In Q) ; 0<Q<L1.

It can be seen from (11) that the results of our simple geometrical model agree
well with the results of the Fuchs-Sondheimer non-geometrical theory.

3. Conclusions

The size effect occurs in a lot of important systems: in very thin conducting films,
in continuous filamentary and granular superconducting composites, and in poly-
crystalline metals. This effect increases the resistivity more or less significantly in
these systems. The resistivity increase is described well by the Fuchs-Sondheimer
non-geometrical theory. The results of our simpler, geometrical model for the resistivity
increase agrees well with the results of the Fuchs-Sondheimer theory.
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