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BIOOPTICAL STUDY OF THE CORNEAL LENS OF THE WATER BUG
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A geometric optical calculation is given for the shape of the transition interface which eliminates
longitudinal spherical aberration in the corneal lens of the backswimmer (Notonecta glauca). This
interface is determined for differently-shaped corneal lenses. The advantage of the cornea of
Notonecta is shown in comparison with other possible corneal lenses.
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Introduction

The approximate shape of the transition layer in the corneal lens of the water bug
known as the backswimmer (Notonecta glauca) has already been calculated by Schwind
[1, 2]. His calculations employed the radii of the circular arcs that closely approximate
the refracting surfaces or the isorefraction line. Five circles were used for the interfacial
curve between the two lens units. The computation was simplified by taking the regions
between the best-approximation arcs as optically homogeneous. This approximate
numerical method is difficult , slow and is not exact enough ; it does not allow the quick
determination of the exact theoretical shape of the transition layer for differently-shaped
corneal lenses. Furthermore, the question: “what is the optimal shape of the corneal lens
of the backswimmer?' is not yet made clear.

In this work we solve directly the geometric optical problem of the transition layer of
the backswimmer. Using a general and exact method, we determine the shape of the
transition layer for three differently-formed corneal lenses. On the basis of this investiga-
tion we then show the advantage of the real cornea of Notonecta glauca in comparison
with other possible lenses.
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The way of life of the backswimmer

The backswimmer is perfectly suited to life in water: it always swims upside down
under water, and in a state of rest it hangs on the film of the water surface with its claws
and periodically pushes up the tip of its abdomen to breathe.

The prey of Notonecta glauca are in general smaller insects which have fallen into the
water, and certain tiny water animals. The backswimmer locates the position of prey
which has fallen into the water on the basis of the ripples of the water surface produced
by the prey. The bug senses these surface ripples with the scolopidial organ on its claws
[3, 4].

Notonecta glauca behaves as an amphibian, it leaves the water if its environment be-
comes unsuitable or when it finds a partner for copulation. It can find a new body of
water on the basis of the skylight reflected and polarized by the water surface [5,6]. The
optical localization technique of this predacious, amphibious bug is well-known. Schwind
investigated experimentally the visual system, the dioptric apparatus of the backswimmer,
and the way in which it exploits polarized light [1,2,56-7]

Backswimmers prefer turbid, still water with a dense growth of aquatic plants[8], their
peripheral rhabdomeres serve as a scotopic system — they are used to perceive dim light
in turbid water [9]. In that the diameter of the backswimmer’s corneal lenses is small
40 um, were the diameter to be smaller the lenses would not be suitable because in this
case the amount of light that would be received by an individual cornea could be in-
sufficient. The backswimmer’s corneal lenses without longitudinal spherical aberration
serve the purpose of increasing the light-collecting efficiency and the optimal high
contrast, which both have relevance to the survival of the organism.

The eye of the backswimmer

The dioptric apparatus of the apposition eye of Notonecta glauca has two optically
important properties. The entrance surface of the cornea is very fiat, and it is almost
perpendicular to the axis of the ommatidium [2]. The lens consists of two optically
homogeneous units, and there is a bell-shaped thin transition layer between them, in
which the refractive index varies continuously [1] (see Figs 1 and 2).

The amphibious manner of life is made possible for the backswimmer by the flat
entrance surface of the cornea, with which the bug can see sharply in water as well
as in air. In the insert of Fig. 2 the structure of an ommatidium of Notonecta glauca
can be seen [1, 2]. Only those incident rays of light which are almost parallel to the
axis of the ommatidium (called paraxial rays) take part in constructing the image
because the other rays are absorbed in the pigment cells around the dioptric apparatus,
and the rhabdom senses only the paraxial incident rays. This is typical in any apposi-
tion eye. Thus, the focus of the corneal lens does not change when the bug leaves the
water.
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Fig. 1. Interference micrograph of a section through the corneal lens of a backswimmer
(courtesy of Professor Schwind [2]). The diameter of the cornea is 40 um. The bell-shaped
thin transition layer can be seen

The bell-shaped thin transition layer divides the cornea into two parts (see Fig. 2).
Schwind showed experimentally that this layer eliminates the longitudinal spherical
aberration of the cornea and yields an exact focal point on the distal tip of the
crystalline cone (see Fig. 3) [2].

Calculation of the transition interface in differently-shaped corneal lenses

The thin transition layer in the cornea of the backswimmer is considered as an exact
geometrical interface in our optical model. We place the corneal lens in the system of co-
ordinates of Fig. 3, where the cross section of the dioptric apparatus, which has a radially
symmetrical structure, can be seen. The shape of the entrance surface of the cornea, the
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Fig. 2. The dioptric apparatus of the backswimmer consists of the corneal lens and the
crystalline cone. The medium in contact with the entrance surface of the cornea is water
or air. The numbers of the right side are the refractive indices. Insert: the structure of an

ommatidium of the backswimmer

exit surface and the transition interface are described by the functions f.l (x1 ), f2(X2) and
yix) respetively. The numerical value of the geometrical parametersa, b, ¢, d, L, r of the
dioptric apparatus and the refractive indices Ny, Ny, Ng, Ny (see Fig. 3) are given in
Table 1 for the cornea of Notonecta glauca [1, 2].
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Fig. 3. Model of the dioptric apparatus of the backswimmer.Functions f (x.l ),f2 (x2)

and y(x) describe (in main section) the entrance and the exit surface and the transition

interface of the cornea, respectively. Focal point P is at distance L from the exit surface
a, b, c, dand ny, Ny, Na, N, are the geometrical parameters and refractive indices

Table 1

Numerical value of the refractive indices and the geometrical parameters of the dioptric apparatus
of Notonecta glauca [1, 2]

n1(water) =1.333, n, (air) = 1, n, = 1.54 ny= 1.46, ng= 1.356

L=76um, r=20um, a=23um, b=11um, c=12um, d=1um
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Figure 4 shows the path of an incident ray of light parallel to the axis of the omma-
tidium in the dioptric apparatus. All such rays cross the same focal point P on the peak of
the crystalline cone after the refractions, so longitudinal spherical aberration is eliminat-
ed. We can use the law of refraction

sina n_2- sin & _ N3 sinn ng )
. =

'

sinf 4 sinw Ny sin 6 ng

On the basis of Fig. 4 we can write

, df dy df.
tana=-fi(x;) == — tany=pix)=——, tan v=f'2(x2)5—2 (2)
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Fig. 4. Path of an incident ray of light parallel to the axis of the ommatidium in the dioptric

apparatus of Notonecta glauca. Only half of the cross section is represented
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From (2) and (3) we get

tan (@ — B) + y’(x)
tan § = (9)

1 — tan (a—p) y’(x)

Using (1) and some trigonometrical transformations, we obtain

tan § n2/’73

[1 +tan 2 6_] 12

(tan & n2/n3)2 112

-tan§

1+ tan2 1)
tan (w—4) = (10)

2
tan“$ n2/n3

[1 + tan? 5] L

(tan & n2/n3)2
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1/2
1+
1= tan2 1)
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(tan nnging)

= f’2 (X2)
1/2

1 +tan2n
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Using (2) and (4) we can write
tan(w —26 +a—B)+f'2 (x2)
tann = (12)
1-tan(w—8+a — B £, (xy)

Equations (5) — (12) constitute a system of equations for calculating the shape of the
transition interface in a lens without longitudinal spherical aberration. Then we apply
this theory for differently-shaped lenses, and determine the interfacial curve y(x). The
following type of differential equation derives from the system of equations (5) — (12)

FP(,y(x),y'(x),f1(x1), falxg),a,b,¢c,d, L, nq,ny, ng, n4]= 0 (13)

We consider three cases. In the case of a trapezoid corneal lens (see Fig. 5), functions
f1(x1 ) and f2(x2) are

f1lxq) =d — xqdir, falxg) = xoclr (14)
Substituting (14) into the system of equations (5) — (12) we obtain

2@ by ky) +2° (ko= Qohy — Qq hp)+ 2% (hy @y +hy Q3+ @ hg- kg) -

(15)
—Z(h203+Q2h3-k2) +03h3—k4=0, Z=tan(w'—6+a—6)
nqd/(rng)
[1 +d2/r2]1/2
dir -
- (d2 /r2) (n1/n2)2 1/2
2,2
tan (@ — ) - 1+ d</r (16)
n1/n2
2,2 11/2
14+ dcir
1/2

2
(@21r2) (n4ny)

1 e S
1+ g2)2
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Fig. 5. Theoretically determined interfacial curve for water and air in a trapezoid
corneal lens

tan(w—56 +a—g) —tan (a — B)
1+tan(w—-56+a—pB)tan(a—B)

(17)

tan (w —6) =

tan? 841 - (nying)2 [ 1+ tan? (w —5)]}+ 2 tan3 § tan (0 — 8) +
3 (18)
+ 2tan [1 - (n2/n3)2][1 + tan? (w—ﬁ)] + tan § tan (w — 8) +

-+-tan2 (w—26)=0

tand — tan(a— B)
y'(x) = (19)

1+ tanStan(a—f)
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The notation used in (15) can be found in the Appendix (A(1)) Equations (15) and
(18) are fourth degree equations for z and tan § respectively, and can therefore be solved
analytically. Because of the extreme complexity of further analytical treatment, the
numerical solution is quicker and simpler. During the numerical solution using the
tangent method of Newton, we solved (15) for z, then using (16), (17) we solved (18) for
tand, then using (16) obtained j-’(x) from (19). From here the function y(x) can be deter-
mined, using the iteration y(x+ Ax) = y(x) + y'(x) *Ax: Ax =r/m, where m is a large num-
ber (m>>1). We determined y(x) for nq (water) = 1.333 and nq (air) =1, the curves ob-
tained are shown in Fig. 5.

If we substitute c=d=0 into the above expressions obtained for a trapezoid lens, we then
obtain the case of the plane-parallel lens

Ay +0)2Aa- 258y +b) A+ 22 [x2A +y +6)2 - (Ln3/n4)2] =
(20)
—22x (y +b) +x2=0, A =1 (nglny)?

2

4 2 3 2 2
y' [1=B(1 +z%)| +2zy: +y (1-B) (1+2°)+2zy'+2°=0

(21)
B =( n2/n3)2

We also solved numerically (20) for z, then (21) for y’(x). After this we obtained the
interfacial curve y(x). The result is given in Fig. 6. The paraxial incident rays of light do
not refract on the entrance surface of the plane-parallel lens, so the shape of the inter-
facial curve y(x) is independent of the refractive index ny.

The shape of the cornea of the backswimmer can be approached by a plane-paraboloid
lens [1, 2]

Flx)=0,  f5lxy) =clxyir)? (22)
Substituting (22) into the system of equations (5) — (12) we obtain

9 8 7 6 5 4 3
P12x122 +P10x120— Pg x5+ Pg x5 + P7 X3+ Pg x3 —Pgxy+Pyxy+P3x;

2 2

4 n 3 2 n

y’ 1——2—(1+22) + 2zyr +y’ 1- 2 (1+22)+22y,+22=0 (24)
2 2
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Fig. 6. Theoretically determined interfacial curve in a plane-parallel corneal lens

The notation used in (23) and (24) can be found in the Appendix (A(2)). We solved
(23), (24) numerically (using the tangent method of Newton). During the solution the
refractive index nq can be optional, similar to the case of the plane-parallel lens. The
result is shown in Fig. 7.

Conclusion

The theoretical transition interfaces in the trapezoid (cornea A) and plane-parallel
(cornea B) lenses cross theientrance surface of the cornea (see Figs 5 and 6) for the param-
eters presented in Table 1, therefore the interface cannot eliminate the longitudinal
spherical aberration for the whole of the diameter of the lens. So the diameter of the
spherically-corrected lens is smaller than 40 um for corneas A and B. The theoretical
transition interface in the plane-paraboloid (cornea C) lens is flatter than in corneas A
and B (see Fig. 7), and it can eliminate the spherical aberration for the whole diameter
of 40 um.

The light-collecting efficiency of a lens is proportional to (r/f)2. Focal length f is
equal for corneal lenses A, B and C investigated, but r < 40 um in corneas A, B, and
r = 40 um in cornea C. Thus, the light-collecting efficiency of the plane-paraboloid
cornea investigated is greater than that of the other two lenses considered, therefore the
former lens is optimal among the above three lenses.
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Fig. 7. Theoretically determined interfacial curve in a plane-paraboloid corneal lens

Spherical aberration becomes important when the size of the blur circle is larger than
the diameter of the Airy disk due to diffraction, which is given by

d=2.44f\(nD) (25)

where A, f, D and n are the wavelength of the ray of light, the focal length, the diameter
and the refractive index of the lens, respectively [2, 10, 11]. Whereas the diameter of the
diffraction disk decreases with increasing relative aperture, the diameter of the blur
circle increases, approximately as the cube of D/f. The intersections cf these two curves
show that spherical aberration is not important in very small lenses. Since the diameter of
the corneal lenses of the backswimmer is quite small, the advantages which accrue from
correcting for spherical aberration are not large. On the other hand Schwind showed [2]
that the value of the frequency-response curve is 28% higher for the spherically-correct-
ed corneal lens than it is for the uncorrected lens, which has a wave from aberration of
A=~1 at A =546 nm.

The structure of the large corneal lenses of several trilobites that died out 400—500
million years ago is quite similar to that of Notonecta glauca [12].
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APPENDIX

The notation used in (15)

kq = (n:,;Lc/n4I')2 . ko= 2c(1-(:2/r2) (n3LIn4)2/r
k= (ngLing)? (1 + ¥t - ac2r?) | ky= (naLeingr)?
by =2+ 1- WZnD2 | hy=2cinging) i
hz=1+ (cir)? (1- nging)
Q=124 + (1422 (y +b +o) [ 2022 +(1+ 622) (y +b + c)]
Qy=2L2 (i3 +2(1+c2r?) (y +b +c) [Lc/r +x(1 + cz/r2ﬂ+
+2L (cin? (1 +c2r?) x
Qg = (Lein? +x (1 + ) [ 20l +x(1 + 1) A1)

The notation used in (23) and (24)

ky=1+4c2L2% + acLi? | ky=4c® , kg=actir® + 8L
9q°= (n3L/n4)2 . 9o= (n30/n4r2)2 —(1- n%/ng )k3
93 =2cL (n3/n4r)2 + (1 n%/ng) k1 . 9= (1- n%/n%) k2

hy=dex(y +b+c) /- 2x , hy=1+4c% (y+b+c)2/r*-acly +b+c) /12
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h3=4c2/r4—8(:3(y+b+c)/r6, h4=4(:4/r8 . h5=4c2x/r4
O1=4c2x/r4, 02=(y+b+c)2, Q3=c2/r4
@q=2cly +b+c) /2 +ac?x2 " | Qg=dexly +b+c) [ r?
P12=h494 . P1o=Qgky=ig9y +h3g, . Pg=Qiky+hggy
Pg=Q3k3 +Quky=h3gy+hyg3+hyg, . Py=hggy+hyg,- Qq k3~ Qgky
Pe=Qukg+ @y ky+Qgky = hygy-hygy +hygz+x’g,
Pg=hy9y+hsg3+Qsky+Quky , Py=0yk3+Quky~h3gy=x"gy+hyay

= = — = 2 = = 2
P3=h193+h591-Qgky . Py=Qyky=hygy+x“g3, Py=hygy ., Po=x“g,

X"X2

z=tan (w=-68) =

2
y+b+c—c(x2/r) A2)



