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A simple geometrical model is given for the resistivity increase of thin conducting
films. The results of our model agree well with the results of the non-geometrical Fuchs—
Sondheimer theory. The model is improved for the films with roughness, when additional
terms appear in the total resistivity expression. A quantitative analysis is presented for
the thickness dependence of these additional terms under the condition of symmetrical
deviations from the mean film thickness d. A calculation including the size effect is made
for the normal resistivity of the in situ filamentary superconducting composite tapes. The
size effect does not seem to play an important role in the stabilization of these discontinuous
filamentary systems, not as it can play in continuous filamentary systems.

1. Theory and occurrence of the size effect

1.1 Suze effect

If the thickness of a conducting film is commensurable with the mean free path

of the conduction electrons in a bulk material, the electrical resistivity increases
because of the diffusive scattering and the reflection of the electrons at the film
surfaces. This resistivity increase is called size effect in this work.

The theory of the size effect is elaborated by Fuchs [1] for the free-electron

model and a spherical Fermi surface. Price [2] improved this theory for ellipsoidal
Fermi surfaces. Sondheimer [3| elaborated the Fuchs theory for the explanation of
the galvanomagnetical effects. The expressions derived from the Fuchs-Sondheimer
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theory for the electrical conduction of thin conducting films can be used well in
practice [4-8].

The size effect occurs practically for every very thin film because they have an
insulating (oxide) layer or an adsorbed gas layer on their surface, so the scattering
of the electrons at the film surfaces is partly or totally diffusive [5-8]. The influence
of the adsorbed gas layer on resistivity of the thin metal films is examined by Finzel
et al [9]. The size effect occurs also in every polycrystalline metal because the
resistivity of the grain boundaries is larger than that of the crystallite. However,
the resistivity increase is not significant, because the ratio of the resistivity of the
crystallite and the grain boundary usually is near to unity [17-19].

The size effect appears in the multifilamentary superconducting composites,
too, in normal state when the filaments are appropriately close to each other, and
the normal resistivity of the filaments is much larger than the resistivity of the
matrix [10-15]. A model is given by Cavalloni et al [13,14] to calculate the influence
of the size effect on these multifilamentary systems.

In the granular (in situ) superconducting composites the size effect could play
a greater role in the normal state than in the continuous filamentary systems be-
cause of the random distribution of the small grains or short filaments [16]. In
such percolative systems the filaments can be very close to each other, so the in-
terfilamentary resistivity of the very thin matrix layers can be hardly increased in
normal state. The normal resistivity can nevertheless play an important role in the
stabilization of the superconducting state of multifilamentary systems [16].

In this work we devise first a simple geometrical model to calculate the resis-
tivity increase due to the size effect. We examine the conducting films with parallel
surfaces which have insulating layers on their surfaces. We suppose that the elec-
trons are scattered totally diffusively on the boundary surfaces of the film. We
compare the results of our model to the result of the Fuchs—Sondheimer non-geo-
metrical theory.

1.2. Size effect in a thin conducting film between insulating layers

In the free-electron model the resistivity is
p = mov/(ne?)), (1)

where mg, €, n, ¥ and ) are the mass, the charge, the volume concentration, the
mean velocity and the bulk mean free path of the conduction electrons, respectively.
The electron mean free path in the proximity of the surface of a finite conductor
decreases because of the diffusive electron scattering on the scattering centres of
the surface, and the resistivity of this part of the material increases.

Our geometrical model for the calculation of this resistivity increase is a con-
ducting film between two parallel insulating layers with infinite resistivity. Because
of this infinite resistivity the conduction electrons cannot be scattered beyond the
boundaries of the film. Imagine a sphere with radius A around the electrons, named
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A-sphere in this work. On average the electrons are scattered if they have reached
this sphere surface. In a homogeneous, isotrope bulk material the electron mean
free path is isotrope because of the infinite extension. However, in a very thin con-
ducting film between the above mentioned insulating layers the boundary surfaces
can cut a spherical calotte out of the A-sphere. So the mean free path becomes
direction dependent.

The average of this direction dependent mean free path can be calculated.
Such a lambda sphere is cylindrically symmetrical to the axis T going through
the examined electron and perpendicular to the insulating layers (Fig. 1), so it is
enough to make an average for the main section.
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Fig. 1. The lambda-sphere in a thin conducting film between two parallel insulating layers

Consider an electron at a distance t; and t, from the film surfaces. In this
case the average of the mean free path is

a B m/2 m/2
o /Ad6+/Ad6+ /(tl/sine)d6+ /(tz/siné))de =L (@)
0 0 @ B

taking into account of the notation of Fig. 1. Performing the integration we get
from (2):

X = [A(a+ B) — t1 Intg(a/2) — (D — t2) Intg(B/2)] 7%, (3)
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where D is the thickness of the film. Introduce the following dimensionless quantities
Q= D/(2)), z=1t1/), e=’\/X (4)

In the case of very thin films both of the boundary surfaces could cut into the
A-sphere. In the case of thicker films such special arrangements exist when only
one or none of the surfaces can cut into the A-sphere. Taking into consideration
the different arrangements, the average of £ depends on the quantities Q and z as
follows

1.fQ>1 and0<z<1,
then £= [+ /2 — zIntg(a/2)|r !t = ¢
1<z<2Q-1, thent=1
2Q —1<z<2Q, then £=[f+7/2 - (2Q — z)Intg(B/2)|]r "' = £,
2.if1/2<Q<1 and0<z<2Q-1,
then £=¢;
2Q-1<z<1, then£=|a+f— zlntg(a/2)—(2Q—z)Intg(8/2)|r"! =£3
1<z<2Q, then £={;
3.1 0< Q<1/2, then £=£;. (5)

If the conductor surrounded by the insulator with infinite resistivity has no parallel
boundaries, we must make an average of A for the residual A-sphere without the
part(s) cut off by the boundary surface(s).
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Fig. 2. Dependence of the dimensionless resistivity £~1(2z,Q) = A/X on z = t;/X and Q@ = D/(2X)

The dimensionless resistivity £~!(z, Q) is plotted in Fig. 2. As we can see
at larger values of Q the resistivity increases only in the proximity of the surfaces.

Acta Physica Hungarica 68, 1990



RESISTIVITY INCREASE 89

The onset of the increase is at distance A from the insulating layers. For distances
larger than A the resistivity is equal to the bulk one. For small @ the resistivity
increase is extended over the whole film.

The average resistivity of the film is

Q
=7 [lpta) s, ©)
Using (1) and (6) we get
Q
p! = (pQ)” 1/£(z)dz, (7)

where the functions p(z), £(z) are symmetrical. Using (4), (5), (7) we obtain the
following expressions

1.0<Q<1/2
Q
! (pQ1r 1/ arcsin z + arcsin(2Q — z)—
0

3 ekl (arc;m:c) B (>2Q e [arcsin(ZQ - z)] }d:c e

= (@) [ F(a)dz

O\o

2.1/2<Q<1

7= (pQm)” / 7/2+ arcsinz — zlntg (a.rcsmz) ]dz+
0

+ / F(z)dz} =
2Q-1
2Q-1
(pQm) 1{ / G(z)dz + / F(z)dz
3.9>1 0 e
51 = (pQ)—l[w-IO/G(z)dHl/dx]. (8)
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Integrating (8), the average resistivities are

1.0<Q<1/2
77 = (pQ@n) T {8(1- 4@ 22~ (1- Q%)% — 1/2+

1—(1;SQ)' ]}’

+ 2Q arcsin(2Q) — 2Q% In [
2-3.1/2<Q
Blp=1+(2rQ—-1)"". (9)

On the basis of the Fuchs—Sondheimer non-geometrical theory for the resis-
tivity ratio can be obtained [1-4]

5/p~1+3/(16Q) = 1+0.1875/Q, Q>1,
5/p~—4/(3QInQ) = —1.3330/(QInQ), 0<Q <1, (10)

when the scattering of the electrons is totally diffusive at the film surfaces.
From (9) we get

p/p=~1+1/(2rQ) =1+0.1590/Q, Q>1,
p/p~—7/(2QInQ) =-1.5710/(@InQ), 0< Q< 1. (11)

It can be seen from (11) that the results of our simple geometrical model
agree well with the results of the Fuchs—Sondheimer non-geometrical theory.

2. Influence of the size effect on rough films

2.1 Size effect in rough films

The influence of the surface roughness on the electrical properties of pure
metal films is well known [15, 20-26]. The thickness dependence of the electrical
resistivity of rough metal films is investigated thoroughly by Finzel and Wissmann
[15,21]. The expression of the total resistivity of rough metal films consists of the
contributions of the normal bulk resistivity, the well-known term of the scattering of
conduction electrons on the grain boundaries and surfaces, and an additional term
due to roughness, which varies proportionally to d~2 at symmetrical deviations
of the thickness from the mean value d [21]. Finzel and Wissmann calculated
the total resistivity of rough metal films in the case of A « B < d, where B
is the maximal thickness deviation from the mean value d [21]. Crittenden and
Hoffmann introduced a thickness correction term into the total resistivity expression
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to describe the influence of the surface roughness. Namba [23] extended this theory
assuming that the film surface can be characterized by a sinusoidal profile [22].
Hoffmann and Vancea gave a quantitative analysis of the roughness effect with
roughness B < X < d [24,25,26]. The total resistivity of very thin films (d < })
with surface roughness (B < d) is not investigated yet. In the case of B < d < A
the size effect has an important role, too [2,3,10,13].

In this work we give a quantitative analysis for the thickness dependence of
the electrical resistivity of very thin (d < A) and rough (B < d) films considering
the size and roughness effects. For the surface roughness we use the model of
Finzel and Wissmann [21], assuming that the investigated very thin film consists of
a monolayer of crystallites, and the boundaries of the cystallites are mainly align
perpendicular to the film surface.

The average crystallite size and film thickness is d. The deviations of the
thickness from this average value have a distribution function f(y). This distribu-
tion has a cut-off at y = B where B is the maximum value of these deviations. We
assume a symmetrical distribution of the film thickness around the mean value d.
Such a distribution has been confirmed experimentally by several authors [21,27,28].

2.2. Thickness dependent resistivity of thin rough films

The resistivity of a crystallite with size d — y is [21]

pc(y)=po(1+3—f—y) , k=20, (12)

where z, 0, A, d, y, po are the number of scattering centres per unit surface, the scat-
tering cross section, the bulk mean free path of the conduction electrons, the mean
crystallite size, the deviation of the thickness from its mean value d, and the resis-
tivity of very thin crystallites, respectively. By the model of Finzel and Wissmann

[21] the total resistivity of the film is the average of the resistivity contributions of
crystallites of different size

; (13)

where f(y) is the distribution function of the grain size. In very thin films the resis-
tivity po increases because of the size effect. On the basis of the Fuchs—Sondheimer
theory (2,3,7] the resistivity po is in the case of d < A

AX 4(1 - pq) (14)

"°=""[”(d-y)1n(d—i—y)]’ EEERET)
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where p;, is the resistivity of the bulk material with the same densities of lattice
defects as it is in the film. The parameters p and g give the proportion of the
conduction electrons scattered elastically on the two boundary surfaces of the grains.
Introduce the notation

z =y/B, (15)

and from the equations (12)—(15) we obtain

1
_fl (1 2 1_‘2%3) [1 t (1—Bz/d';;\n/z—/——* - )] fizid=

1-Bz/d

Pt ="ps (16)

1
[ f(z)dz
-1
The denominators in (16)
A/d =4
1- d)~! - —_— 17
(-Ba/a), |- B/ (25 )] (17
can be expanded in a power series of Bz/d because Bz/d < 1 is true in the case

of -1 <« z < 1and B/d < 1. When the distribution function f(y) is symmetrical,
all the odd terms of the expansion vanish by the integration, so we can write

B%G;k A) Ak)
Py =po+ Pt g et dln(,\/d)pb+ d2ln(A/d)pb+
B'GoA\ [, 3 2
2d3In()/d) In(A/d)  In*()\/d)
= b + pac + P + poi + P + 00 + ., (18)
where :
[ z"f(z)dz
Gn="——, n=24,.... (19)
flf(z)d:z

In the case of d >> k the terms of higher order can be neglected compared with the
first six terms in (18).

In the case of asymmetrical distribution function f(y) further resistivity terms
appear in the total resistivity, which can be calculated from (16)

_ BkG, _ ABK)G, 1
PA=Tg P P27 B(d) [ - 1n(,\/d)]”"’
ABAG, 1
P2 = 2 n(r/d) [ e ln(/\/d)] B (20)

Expressions (18) and (20) give the mean thickness dependence of the additional
resistivity terms due to the roughness and size effect considering a symmetrical and
asymmetrical distribution function f(y), respectively.

Acta Physica Hungarica 68, 1990



RESISTIVITY INCREASE 93

‘8. Size effect on in situ composites

8.1 Size effect in the in situ superconducting composites

In an in situ superconductor the discontinuous filaments can be very close
to each other. Between the filaments a normal matrix film can be formed. In the
normal state of a superconducting wire the normal resistivity will be determined by
the matrix resistivity, because the normal resistivity of superconducting filaments'is
much higher. The appropriate normal resistivity of the multifilamentary supercon-
ductors is a very important factor in the stabilization of superconducting systems.
In this work we investigate the role of the size effect in the normal resistivity of the
in situ filamentary superconductors.

The resistivity of the multifilamentary superconducting wires or tapes, in
the normal state is one of the most important parameters for the design and the
optimization of a superconducting system. When the multifilamentary conductor
goes to normal state because of some irregularities the current will be carried by
the whole volume of the conductor. To decrease the current consumption of the
superconducting filaments the longitudinal resistivity of the matrix has to be much
smaller. In this case the important part of the current can be carried by the non-
superconducting matrix. In AC electrical or magnetic fields there is an essential
contribution to the energy losses from the arising eddy currents. These currents
flow in transverse direction and if we want to decrease the losses the transverse
component of the normal matrix resistivity has to be large to eliminate the eddy
currents. So the longitudinal resistivity p|| of the multifilamentary superconducting
composites in the normal state determines the current flow dissipation, and the
transverse resistivity p is an important parameter of the composite superconductor
in relation to the AC losses. At present the wires and tapes consisting of a few
thousand of different superconducting thin filaments in a normal metal matrix with
small residual resistivity are most frequently used.

Several experimental and theoretical works on the superconducting wires and
tapes have been accumulated [10-16,29-37] till now, but the importance of size
effect on the normal resistivity of such superconducting systems has been fully
recognized only recently. Drobin et al developed a method to measure directly
the transverse (p.) and the longitudinal (p)|) resistivities of a normal matrix in
commercial continuous multifilamentary superconducting wires and tapes. They
investigated also the size and proximity effects in these systems [10,15]. There are
several other methods for the indirect determination of p; and pj [29,30]. Taking
into account the size effect, Cavalloni et al performed numerical calculations of p
and p|| of the multifilamentary superconducting wires in the normal state (13,14].
Other authors investigated also the normal resistivity of these wires and tapes
considering the size effect [11,12,13].

The size effect can play a more important role in the interfilamentary resis-
tivity of the granular or filamentary (called in situ) superconducting composites,
because the superconducting filaments can be very close to each other in these sys-
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tems. Several theoretical and experimental works have been made on the normal
resistivity of the in situ filamentary superconducting composites [16,32-37], but the
size effect on the electron transport in the normal state is not investigated in these
systems yet.

As we mentioned the transverse resistivity of the matrix has to be as large as
possible in order to suppress the eddy currents responsible for a sizable fraction of
the AC losses. On the other hand, the longitudinal resistivity of the matrix must
be as small as possible, to minimize the power dissipation and the concomitant
temperature rising if some regions of the superconductor suddenly go to normal
state, when practically all the current will be carried by the matrix [13].

In this work we show for the in situ filamentary superconducting composite
tapes that the transverse resistivity of the matrix will not be large in spite of the fact
that the interfilamentary resistivity can be very large because of the size effect. The
longitudinal resistivity of the matrix can be suitably small in spite of the resistivity
increase between the filaments.

8.2. Calculation of the average resistivity of the in situ
composite considering the size effect

We investigate such filamentary superconducting composites in which the
resistivity of the superconducting filaments in the normal state is much larger than
that of the matrix, and therefore it can be taken as infinite. In the in situ filamentary
superconducting composite tapes the long flat filaments are randomly distributed
in a normal metal matrix. We consider a diffusive electron scattering at the matrix—
superconductor interface in the normal state of the superconductor and an isotropic
bulk electron mean free path. Under these circumstances the theory of Fuchs-
Sondheimer can be used to describe the resistivity increase between the overlapping
filaments. On the basis of this theory the interfilamentary resistivity is

aa )], D<A (21)

3Dln(%

Pi = Po [1 s
where pp, A and D are the resistivity of the bulk matrix, the isotropic bulk electron
mean free path and the distance between the overlapping filaments, respectively. If
the tape is very elongated and/or flattened the condition D < A can be realized.

Using Carr’s model [33-35], we consider an in situ filamentary superconduct-
ing composite as a continuum with anisotropic properties averaged over the volume
containing a large number of superconducting filaments. In this model only the re-
sistivity of a uniform cell must be investigated, and the composite consists of such
uniform cells. The average resistivity of the composite is equal to the resistivity of
one cell.
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Fig. 8. Two neighbouring superconducting filaments overlapped, the interfilamentary region of
the matrix and a uniform cell of the in situ composite

A uniform cell of the in situ filamentary superconducting composite tape can
be seen in Fig. 3, where z1, y1, 21, ¢, w, d, Z - § are the side measurements of the
uniform cell and the filament in the direction z, y, z and the area of the overlapping
interfilamentary region, respectively. The filament is placed in the uniform cell
coaxially. py, py and p; are the resistivities of the matrix, the filament and the
overlapping interfilamentary region, respectively. The resistivity p; will be taken
as infinite, the resistivity p; is increased by the size effect as it can be seen in Eq.
(21). The direction of the elongation of the composite is the direction of the axis z;
and the composite is flattened parallel to the surface zy. We suppose £>> w > d,
so a significant size effect occurs only between the overlapping surfaces Zg of the
neighbouring filaments. The distribution of the resistivity in a cell can be seen
in Fig. 4. Assuming parallel current lines to surfaces, the average resistivity of a
uniform cell in the direction z, for example is

// ndydz ' (22)

(‘{ p(r)dz

On the basis of Fig. 4 performing the integrations, we obtain

1 zi(y —§)+ (§—w)d wd (21 — d)§
— + : B
R, b1 po(z1 =€) + sl piEtpp(a1—5) (93
1 _ml@-8+E-0d td (2, — d)i
R, PoY1 po(yr—w)+posw  pd+o(v —9) (g
1 z1y1 —wl zy wl — §
—_— e s 25
R, Pb21 pi(z1 —d) + Pfd po(z1 — d) + pyd (2)
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Fig. 4. The distribution of the normal resistivity p(z,y, z) in a cell of the composite. The origin of
the system of co-ordinates is the point 0

An in situ filamentary superconducting tape is elongated and flattened from an
initial granular superconducting composite. For the elongation and the flattening
the following terms can be written

T1y121 = 29 = fwd/c = £3 /¢, (26)
E=1{/t=z1/20, y1/20=w/lo, 2z1/20=d/bo, (27)
k=w/d, (28)

where zg, £, ¢, E, k are the initial length of the composite, the average grain
size, the superconducting volume ratio, the degree of elongation and flattening,
respectively. From (26), (27), (28) we obtain

L=U6E, w=1L(k/E)}?,  d=t(kE)"?

g1 =cVGE, y =c V3% (k/E)M?, 2 =c M3 (KE)TYE (29)

Using (29), the average resistivity of a uniform cell, in the directions z, y, z is

Pz = Rzy121/$1 == Rzeo/(Ezcl/s)s
Py = Ryz121/y1 = RyZOE/(kcl/s),
p: = R.z1y1 /21 = RoloEkc™ /3. (30)
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The filaments have a random distribution in the matrix. This can be taken in-
to account in Carr’s model, so an average overlapping area is supposed with the
following average side measurements

=n,¢ and §=nyw, 0<ngn, <1l (31)

a2

The value of n, and n, increases with the increase of the superconducting volume
concentration c. Using (23), (24), (25), (29), (30), (31) and substituting p; = oo
into (23), (24), (25) we obtain the direction dependent average resistivity of the in
situ filamentary superconducting tape

Babi o g=3/8 = 1y
b

m=m%nwmm_am%—m+ mll=ei) }, (2)

Py = Pb {(1 i 01/3)[1 = cl/a(nz =~ 1)+ nedl 61/3) } , e

Nyl -1/3 _
Pb +et/ Ny

Pz = po/(1 = /). (34)

Since the composite is elongated in the direction z (£ > w > d), the longitudinal
resistivity is described by the expression of p,, and the transverse resistivities are
described by the expressions of p, and p,. It can be seen that the size effect
is important only in the longitudinal resistivity and the transverse resistivity of
direction y.

In Carr’s model the average distance between the overlapping filaments is

D=z —d={(kE)~ /3 -1). (35)

Size effect occurs if D < A. From (21) and (33) it can be seen that the condition
pi/py > 11is confirmed. At a given £, and ¢ D can be small in the case of kE > 1.
So the size effect can increase the interfilamentary resistivity for large elongation
(E > 1) and/or for large flattening (k > 1) of a composite. In the case of large
pi/po the following expressions can be given for the average longitudinal resistivity
and the transverse resistivity of direction y

e = oo { (1= oL =) 411} i)

b= o { (1= /)21 = ng) 1]} (37)

Taking into account the relation n, &~ ny, because of the random distribution of
the initial grains in the matrix, p, and p, are described by the same expression. So
the requirement for p, to be large while p, is small, cannot be realized. When p,
is small then p, is small too, and inversely.

From (34), (36) and (37) it can be seen that the average resistivity of a
composite depends only on the superconducting volume ratio, so the size effect does
not have a significant role in it. The size effect can make change the interfilamentary
resistivity only.
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4. Summary

The size effect occurs in many important systems: in very thin conducting
films, in polycrystalline metals, in continuous filamentary and granular supercon-
ducting composites. This effect increases the resistivity more or less significantly in
these systems. In this work we investigated the resistivity increase due to the size
and roughness effects in different conducting systems.

We considered a thin plane-parallel conducting film with insulating layers.
The resistivity increase in it is described well by our simple geometrical model and
our results agree well with the results of the Fuchs—-Sondheimer non-geometrical
theory.

We investigated a thin rough conducting film. The assumption of our calcu-
lation was that the thickness deviations from the mean value d are symmetrical,
the maximal deviation is much smaller than d, and d is much smaller than the bulk
mean free path of the conduction electrons. Under these circumstances the total
resistivity is given by six resistivity terms. The first three terms are well known:
the normal bulk resistivity (ps), the contribution of the scattering of the conduction
electrons on the grain boundaries and surfaces (p,.), and the term of the scattering

on the roughness (pi’c)). Our new additional resistivity terms belong to the size
effect (d < A). The first additional term p,; is due to the size effect only, and varies
as [dIn(A/d)]~!. The second one pizc) describes the combination of the size effect
and the scattering of the electrons on the grain boundaries and surfaces, which
varies as [d?In(A/d)]~!. The third additional term is due to the combination of
the size and roughness effects, and it varies as d 3F[In(\/d)]. At very thin films
(d < )) the additional three terms have primary relevance in the total resistivi-
ty. The parameters b, k, B, G5, A and ) in the expression of the total resistivity
can be evaluated from experimental data. When the thickness deviations from the
mean value d are asymmetrical, some further terms appear in the total resistivity
expression. These terms are due to the combination of the roughness effect and the
scattering (on the grain boundaries and surfaces) (p1), the size and roughness effect
plus the scattering (pz), the size and roughness effect (p3).

Finally, we investigated the role of the size effect in the in situ supercon-
ductors. The interfilamentary normal resistivity can be very large in the in situ
superconducting tapes because of the size effect if the elongation and the flattening
of the tape are large. On the other hand the average normal transverse resistivity
cannot be large in spite of the size effect, so the eddy currents, which are responsible
for a sizable fraction of the AC losses cannot be suppressed. The average normal
longitudinal resistivity remains small for a small value of the superconducting vol-
ume ratio in spite of the size effect, so all the current can be carried with small
power dissipation by the matrix if some regions of the superconductor go to normal
state. Thus, the size effect does not play an important role in the average normal
resistivity of the in situ superconducting tapes, therefore the size effect cannot be
used for the purpose of the stabilization as it is used in the case of the continuous
filamentary superconductors. This conclusion can be explained by the difference of
the structure of the in situ and the multifilamentary superconducting tapes. In the
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in situ superconducting tapes there is a random distribution of the finite filament
fragments and in this case the appropriate current distribution does not take into
account the parts of the conductor with locally enlarged interfilamentary resistivity.
This can be an interpretation for the insensitivity of the size effect of the in situ
superconducting tapes.
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