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I. The Resistivity of an Individual Cell of the Composite

By
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A simple model is given to determine the resistivity of the elongated granular superconducting
composites in the normal and superconducting states. The model is constructed from uniform cells
to fill the entire volume of the composite wire or tape. For the uniform cells a random distribution
is assumed. The individual cells consist of cylindrical or parallelepiped elongated superconducting
filaments surrounded by a normal matrix. In the calculation of the resistivity-temperature curve
of an individual cell the proximity effect is taken into account.

Es wird ein einfaches Modell zur Bestimmung des Widerstands der langgranularen supraleitenden
Zusammensetzungen im normal- und supraleitenden Zustand angegeben. Das Modell ist aus ein-
heitlichen Zellen konstruiert, die das gesamte Volumen des Drahtes oder Bandes fiillen. Fiir die
einheitlichen Zellen wird eine statistische Verteilung angenommen. Die individuellen Zellen be-
stehen aus langen zylindrischen oder parallelepipedisch geformten supraleitenden Drihten, die
von einer normalen Matrix umgeben sind. Bei der Berechnung der Widerstands-Temperaturkurve
einer individuellen Zelle wird der Nahwirkungs-Effekt beriicksichtigt.

1. Introduetion

The methods of production of commercial multifilamentary superconducting com-
posites are very complicated and expensive, and they have some disadvantages mainly
in mechanical aspects. The alternative way to make superconducting composites is
the in situ filamentary technique [1], when the mixed solid constituents are melted
together, cooled at a controlled rate and the filaments are formed by subsequent
drawing and/or flattening. In this case the discontinuous superconducting filaments
have a random distribution.

In the cooled mixture the shape and size of the superconducting inclusions depend
on the fabrication and the cooling processes but in many cases they have a quasi-
spherical symmetry and a very small size (=~ 10 um) [2]. After the drawing and/or
the flattening of the cast of the composite the filaments can be considered as cylinders
or thin parallelepipeds.

For the superconductivity of these materials with discontinuous superconducting
filaments there are some explanations. As has been shown in highly reduced wires
there is a very low resistance when the filaments do not touch [3]. Through the random
contacts a continuous network can be formed [4], that is the filaments percolate in
superconducting state. In the development of the percolative chains the proximity
effect of the filaments can be taken into account, too [5].

Our aim is to give a simple model to calculate the resistance of an in situ super-
conducting tape in normal and superconducting states. The elongated and flattened

1) P.O.B. 49, H-1525 Budapest, Hungary.
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filaments are assumed to be parallel to the direction of elongation. According to the
Carr model [6, 7] in a strongly in situ elongated superconductor the filaments are very
close to each other, they have numerous neighbouring filaments and the whole material
can be considered as a continuum which has a quasi-translational symmetry.

To construct a uniform cell around a filament the distances between the neighbour-
ing filaments must be divided into halves. The uniform model consists of such uniform
cells with the only filament placed coaxially. When the non-uniformities of the fila-
ments do not play a great role the superconducting tape can be treated as a continuum
with anisotropic properties and the resistivity can be calculated on the basis of the
determination of the resistivity of a uniform cell alone.

2. Normal State Resistivity of in situ Composite

We consider the uniform cell of the superconducting tape as a parallelepiped shown
in Fig. 1, where @y, vy, 2, ¢, ¥s, 2, are the length, the width, and the thickness of the
cell and the filament, respectively. The directions of elongation and flattening are x
and y, respectively. In our model a reasonable assumption for the filaments is @y >
> ye > 2. In the case of a superconducting wire zp > ¥y, @ > 2, and y; =~ zp are valid
but that does not alter our discussion in the least. The resistivities of the matrix and
the filaments are p,, and g, respectively.
The resistance R in direction x of one cell can be calculated from the integral

f J‘ dJ dz )
f

o, ¥,z

and in the same way the resistances R, and R, can be deduced, where p(x, v, 2) is the
resistivity function in the whole cell. Solving the integrals we get the following ex-
pressions:
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Using the fact that the volume of the superconducting composite does not change
significantly under drawing and/or flattening, we can write

Xy = TlYoro = TeYrre/C = TroYrozo/C 5 (3)

Fig. 1. The uniform cell of an elongated and flat-
tened granular superconductor
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where x,, v, z, and xro, yro, 2ro are the starting dimensions of the formed uniform cell
and filament, respectively, and ¢ is the superconducting volume ratio in the cell.
Let us introduce the relations

E =[xy = xefaey and k= y,/z, = yy/2r (4)
to characterize the elongation and the flattening, assuming that the matrix and the
filaments are deformed simultaneously. If the macroscopic starting dimensions of our
composite are X, Y. Z,, and there are N superconducting inclusions placed at n,,
ny, N, in directions x, y, z, we can express the starting dimensions of the cell by the
equations

xy = Xo[ns , Yo = Yolny 2o = Zg[nz (5)

while for n., n,, n, the equation N = n,n,n, exists. For the superconducting concen-
tration the expression

LeoYro<fo
‘ X (1] YOZ 0 ( )

can be derived. Using starting quasi-spherical symmetry which has been confirmed
experimentally in many cases [2], we can apply the notation Ly = X, = Y, = Z,,
lo = @y = Yy = 7y, and lyy = ry = Yo = 2ro for each dimension as an average value
over all the grains. With the aid of (3) to (6) the length, the width, and the thickness
of the cell and the filament are

x, = ¢ Bk, & = leol ,
Yo = ¢ Pleo(k|E)'2, Yr = loo(k/E)'? (7)
2y = ¢~ Wlgo(kE) 12, 2 = lyo(kE) 12,
where all parameters of the dimensions are macroscopic, namely the elongation ¥, the
ilgt(;tzl;ing k, the superconducting volume ratio ¢, and the superconducting grain

The resistances of the cell in different directions can be expressed with these
macroscopic parameters

l
Rx—l - %F(Qm3 Qf?c) ’
Kl
R11_1 == —kf'gF(Qm’ Of; c), (8)
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Taking into account of the distribution of the grain size we have to solve the integrals

F(om, 05, ¢) (9)
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where m and L(ly) are the maximum and the distribution function of the grain size,
respectively. In many cases the distribution function can be represented well by a
logarithmic normal distribution, but it always depends strongly on the production
procedures. Nevertheless we use the average value of the dimensions in our calculations
[8]

So the anisotropic resistivities of a uniform cell are
0r = Rz, = Rxlfo/(E261/3) .
0, = Ry = RyleoE|(kc'P) (11)

<Y

0, = Ry /zy = RlsoEke13 .

3. Resistivity of a Superconducting Uniform Cell

The average cell resistivities given above are good approximations for the normal bulk
composite when the resistivities of the constitutions do not differ strongly. In super-
conducting state the resistivities of the filaments will be zero and the current will
find an advantageous path in the cell. In such a case the resistivities must be calculated
from the average over the parts of the cell carrying the current. A more exact model
is given by Carr [6, 7] taking into account the dependence of the properties of the
superconducting composite on the current densities.

Our aim is to examine the dependence of the uniform cell resistivities on the tem-
perature below the critical temperature 7', of the filaments. The transition curves of
in situ composite superconductors have a very strange behaviour contrary to the
continuous multifilamentary superconductors. Before the vanishing of the resistance
they have a plateau. Our aim is to interpret qualitatively this plateau using the uni-
form cell model.

In our discussion we take into consideration the appearance of the Josephson jackets
around the superconducting filaments below 7'.. The characteristic thickness of the
Josephson jacket is the coherence length { of the superconducting filament,

; 1/2
T > - (12)
\12722kp T

where h, vy, 4., kg, and T are the Planck constant, the Fermi velocity, the electron
mean free path, the Boltzmann constant, and the temperature, respectively. As we
can see from (12), the coherence length { increases with decreasing temperature, and
through 7, it decreases with increasing impurity concentration. In this way the effec-
tive superconducting concentration cerr, namely the filaments and their Josephson
jackets together, increases with decreasing temperature in an elongated and/or flat-
tened in situ superconductor,

ceffzc(l—{—2—5—)(1+2£)(1—}—2£). (13)
f,

Yt 2f

In developing the bulk superconductivity these overlapping uniform cells percolate,
so the in situ composite will be a macroscopic superconductor when the effective con-
centration reaches the percolative threshold value ¢;. The plateau is created by the
enhancements of the filament proximity effect and the cell percolation.

In the uniform model the following replacements are needed:

or=0, xp—> ¢ + 20, ye—> Yy + 20, ze—>2e+ 20, (14)
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to introduce zero resistivity inside the Josephson jacket. Using (2). (7), (11), and (14)
we get the resistivities p,. 045, 022 of a uniform cell below 7',
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Fig. 2. A two-dimensional example for a non-superconducting in situ granular wire with super-
conducting cells

Fig. 3. The superconducting transition curve of a uniform cell at different values of elongation £
and flattening k
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The uniform cell goes into a superconducting state in the different directions when the
Josephson jacket reaches the corresponding walls of the cell. To obtain the zero
resistivities in the different directions the following coherence lengths are appropriate:

Lo = 3 loB(c™P — 1),
Cy = 5 lro(k/EYZ (=13 — 1), (16)
Lo = 3 lo(kE) =12 (c712 — 1)

The anisotropy on account of the elongation and/or flattening manifests itself in the
direction dependent coherence lengths. Of course with these values of the coherence
length the composite does not surely become a macroscopic superconductor in the
corresponding direction because of the random cell distribution as can be shown in
Fig. 2 in a plane, for example.

The critical temperatures of a uniform cell can be derived from the coherence
lengths,

T* o - hvyleii )
T 3l B2 (c 13 — 1)27
hvgA B
. — 17
Y Skt k(o1 — 1)2 (17)
- hogh

73.7'62](3]3230(0_71/3 — 1)2 ’

Comparing the temperatures, the relations 7% > T¥ and T% > T¥ are obvious in
a strongly elongated and flattened in situ superconductor. Although the uniform cells
are superconducting below these temperatures the superconductivity of the whole
composite is a percolative task.

To demonstrate the developing of the cell superconductivity the resistivities of the
cell in any direction are plotted in Fig. 3 against the temperature. The resistivities of
the cell are calculated from (11) and (15) in the temperature range 7' > 7T, and T, =
= T = T&, respectively. Below the temperature T3 the resistivities are considered
as zero. In the calculation we used the following data chosen reasonably: ¢ = 0.15,
lrg=10"°m, 2 =25 X 107" m, vy = 1.5 x 108 ms™ !, o¢/o,, = 103, and the param-
eters K and k.

4. Conclusions

As we can see in Fig. 3 the dependence of the resistivities of our uniform cell on the
temperature is very similar to the curves which can be obtained in experiments in
the case of conventional granular superconductors [1 to 7] and some high 7', super-
conductors [9, 10]. The transition curve has a plateau depending on the elongation
and/or flattening. Increasing the deformations, the temperature 7% comes closer and
closer to the critical temperature 7', of the filament. First of all through the electron
mean free path the increasing impurity changes the transition curves slightly em-
phasizing the plateau.

In a real granular superconductor the character of transition curve is the same but
the zero value of the resistance appears at a different temperature T5* taking into
account, the percolation of the uniform cells. The calculation of the resistance-tem-
perature curve of the percolating uniform cells can be found in the next part of this
paper.

In the treatment of this topic the resistivity increase due to the size effect can be
neglected in the normal state of the composite as has been shown previously [11 to 13].
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