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The percolation of the electrical conductivity of the uniform cells is studied in an in-situ elongated
granular superconducting composite on the basis of the uniform cell model improved previously. The
critical temperatures are determined in the macroscopic superconducting state of the two- and the
three-dimensional composites.

In einer in-situ-verldngerten granularen supraleitenden Zusammensetzung wird auf der Grundlage des
kiirzlich verbesserten Modells einheitlicher Zellen die Perkolation der elektrischen Leitfahigkeit
untersucht. Die kritischen Temperaturen des makroskopischen Supraleitungszustands der zwei- und
drei-dimensionalen Zusammensetzungen werden bestimmt.

1. Introduction

The limits of the conventional technologies and the advantages of the new in-situ technology
of the production of the superconducting composites are discussed in our previous paper
[1] and elsewhere [2 to 4].

In the recent cell percolation model based on the uniform cells [1] the macroscopic
superconductivity of the elongated multifilamentary in-situ granular superconductors is
examined. The use of a uniform cell for the description of the properties of the whole
material is supported by the Carr model [5, 6] and the superconductor is treated as an
anisotropic continuum. The cylindrical or parallelepiped individual uniform cells consist
of an elongated filament and the normal matrix around it and they fill the entire volume
of the composite wire or tape. The filaments are assumed to be parallel with the elongation
direction.

In the calculation of the resistivity of an individual cell the Josephson jacket around the
filaments and the increase of the effective superconducting concentration are taken into
account. The resistivity—temperature curves of a uniform cell in different directions are very
similar to the curves obtained for the conventional granular superconductors [2 to 4] and
for some high-T, superconductors [7, 8]. They have a significant plateau and a critical
temperature T.f below the critical temperature T, of the filament. The length of the plateau
and the value of the critical temperatures depend on the elongation and slightly on the
impurities.

1) P.O.B. 49, H-1525 Budapest, Hungary.
2) Part I see phys. stat. sol. (a) 117, 265 (1990).
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In a real granular superconductor in spite of the superconductivity of the uniform cells
the macroscopic superconductivity appears only at a lower temperature T.}* (< T.¥) because
of the random distribution of the superconducting filaments. The transition curve of an
in-situ superconducting composite can be divided into the following parts according to
lowering temperatures:

1. Normal state in the temperature range T > T, when the filaments, the uniform cells,
and the conductor are in normal state.

2. Submicroscopic superconducting state in the temperature range 7T °= T > T.f, when
the filaments are in superconducting state, and the uniform cells and the conductor are in
normal state.

3. Microscopic superconducting state in the temperature range T.F = T > T¥*, when
the filaments and the uniform cells are in superconducting state, and the conductor is in
normal state.

4. Macroscopic superconducting state in the temperature range T.* = T > 0 when the
filaments, the uniform cells, and the conductor are in superconducting state.

At present we examine the macroscopic conduction properties of the elongated filamentary
granular superconducting wires or tapes. In the development of the macroscopic super-
conductivity the percolation of the uniform cells must be taken into account and we get
the macroscopic critical temperatures from the percolation of the uniform cells in two and
three dimensions.

2. Cell Percolation in Two Dimensions

Let the elongated filamentary in-situ superconductor be in the microscopic superconducting
state (T.)* = T > T.**) in a given direction. This means in our uniform cell model that the
Josephson jackets around the filaments have reached the walls of the cells in the given
direction. To fill randomly the entire two-dimensional conductor with uniform cells including
a filament coaxially there are two possibilities, namely the random translations of the
uniform cells along one of its sides. The configuration of the translation along the filaments
does not give a percolation task and the macroscopic superconductivity of the conductor
is obvious. The translation perpendicular to the filaments, as can be seen in Fig. 2 of [1],
is closer to a real random distribution of the uniform cells and we examine this arrangement
further on.

Accordingly in our model the uniform cells are randomly translated at right angles to
the direction of the superconducting bands of the uniform cells. The percolation problem
of this arrangement can be formulated in the following way: Oblongs with breadth s and
length b are randomly thrown in the cells of dimension [(a/2) + s] b of a channel with
breadth (a/2) + band inevery cell only one oblong is orientated in the axis of the channel.

We examine the one-dimensional percolation of these oblongs. It is evident that in the
case of s = [(a/2) + s]/2 there is a percolation chain of the oblongs in a channel of arbitrary
length, but in the case of 0 < s < [(a/2) + s]/2 the percolation chain in an infinite channel
will be disconnected undoubtedly. For the band of breadth s in an infinite channel the
critical percolation threshold is

(1)
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In a finite channel the percolation of the i-th and the (i + 1)-th cells depends on the ratio
of the oblong breadth s and the cell breadth a and on their relative positions. If the distance
of the i-th oblong from the wall of the channel is x;, the following cases can be distinguished
when the percolation of the neighbouring cells occurs:

a .
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The probabilities corresponding to the oblongs in the appropriate positions in the i-th cell are
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The probabilities corresponding to the oblongs in the appropriate positions in the (i + 1)-th
cell are
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a

Using (3) to (5) we can calculate the probability of the percolation of the i-th and (i + 1)-th



276 G. HORVATH and J. BANKUTI

cells for the case K (K: I, II, III) and position k (k: 1, 2, 3) when x; € (x;, x; + dx;):
PR PY, 1)k dP(x;). Hence the probability of the percolation of the K-th ratio of s/a is

3 xR

Py = Z j Pf',‘()Pfﬂ yk dP(x;) . (6)

=1 xfk
k=1 )

Performing the calculations the concrete values of the probabilities in the cases mentioned
above,

a
8[/a a 2 a a
m=gl(G+5) G- ) 53] 7

The relations P; < 1 and Py < 1 can be realized easily from (7).
To get the probability of the formation of a superconducting chain from n cells we use
the probabilities of the neighbouring cells,

Py =Pg’, @)

where n — 1 is an exponent. In the case of an infinite chain (n — o0) there is no percolation
at the superconducting bands of s < a/2,i.e. the probabilities go to zero, P,x — 0(K:1,II).

If we have n, cells in the direction of the translation of the uniform cells and n cells in the
direction of the percolation, it is clear that the number of the parallel percolation chains
is n,. The breadth of these percolation chains is equal to the breadth of the filament together
with its Josephson jacket perpendicular to the direction of the superconducting chains.

As we have shown [1] the breadth of the filament together with its Josephson jacket
depends on the temperature. The condition for the development of the superconducting
percolation path is that the breadth of the superconducting stripe reaches the value a/2,

(T = 2. ©)
2
The condition of the microscopic superconducting state can be given similarly,
S(T*)-=b. (10)

The bulk composite becomes a superconductor below the temperature T.**, and in the
temperature range T.** < T < T.;* the probability of the bulk superconductivity is P, or
P, depending on the parameters s and a.

From our consideration the temperature T.* for the bulk superconductivity in the other
direction is lower, because the condition is

S(TY) = a, (1)

and the temperature T.** = T.* is obviously higher than T *.
1 1
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3. Cell Percolation in Three Dimensions

In a three-dimensional in-situ composite we have uniform cells of measures x,y,z, and
superconducting prisms of measures s,5,s; as they are shown in Fig. 1. Let the uniform
cell be in the microscopical superconducting state at first in the direction z as can be
concluded reasonably in an in-situ composite elongated in the direction x and flattened in
the plane xy. The percolation problem can be considered in analogy to the two-dimensional
case, accordingly we place randomly oblongs of measures s,;s, in the cells of measures
[(x1/2) + s{1[(y1/2) + s,] of the cross-section xy (Fig. 2a). The centres of the oblongs c;
can move randomly in a subcell of measures (x,/2) (y,/2) and the condition of the percolation
of the i-th and (i + 1)-th cells is that the centre c¢;,, of the (i + 1)-th cell falls into the
parallelepiped of measures 2s,2s, around the centre c; of the i-th cell as can be seen in Fig. 2b.

Similarly to the two-dimensional case the different possibilities for the percolation
according to the positions of the oblongs (in this case nine possibilities) can be calculated
numerically.

The probability for x; € (x;, x; + dx;) and y; € (y;, y; + dy)) is

4 dx; dy;

XiYi

dP(x; y;) = (12)
In this case the probability of the percolation of the i-th and (i + 1)-th cells corresponding
to the K-th relations of s,/y, and s,/y,, (K: L ..., IX), and J-th, k-th positions of x; and
Vi, respectively, is P% P, 1) 5,6 dP(x;, y), (k, I: 1,2, 3). At last the probability of the i-th
and (i + 1)-th cells corresponding to K-th relations is
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Using (12) and (13), the percolation probabilities are
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The inequality Py < 1 (K = VII) can be realized easily.
The probability of the formation of a superconducting chain from n cells in the case K is

Px=Py'; K:1..IX. (15)

The infinite superconducting percolation chain can be formed only in the case K = VII:
lim P,y; = 1. In other cases an infinite superconducting percolation chain cannot be

n— o

formed: lim P, = 0 (K = VII).

n— o
The critical temperature T;** can be determined by the following equations:
$2T**) = yi/2, sy (T"**) = x4/2. (16)
The real critical temperature T,** will be the lower one of the temperatures T, ** and T,"**,
T* = min {T;**, T'**} (17)
while the critical temperature T.* can be obtained from the equation
s3(T*) = z, . (18)
27
Sz
JTTT I T L 57
%,
57 3 Fig. 1. Uniform cell of the three-dimensional model

composite investigated. The dark parallelepiped (with
dimensions s,, s,, s3) in the middle of the cell (with
dimensions x, y;, z,) is the Josephson jacket surrounding
N the superconducting filament
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The conditions for the microscopic superconductivity in directions y and x are determined
by the equations

$2:(TF) = y1 and sy (T%) = x; . (19)

4. Application of Three-Dimensional Cell Percolation on the Uniform Model

The concrete measurements of the superconducting prism mentioned above can be written
in following forms:

s =X + 28, s, =y + 2¢, s3 =z + 2¢, (20

where xg, yg, z;, and ¢ are the measurements of the filament and the coherence length,
respectively.
The corresponding critical temperatures can be calculated from the equations

ze + 28(TH) = z4, Ve + 28TH = yy, x¢ + 28(T%) = x4,
Ve + 28(TE*) = y,/2, X + 28(T%*%) = x,/2. (21)

Using the measurements of the uniform cell given in [1], the critical temperatures will be

TH* 4hveA E ,
Y 32kl k(c™ P — 2)? @)
T = 4hvgd, '
3n2kgl?oE*(c™ 13 — 2)?
The temperatures T, can be obtained from [1]. As we can see,
lim
g0 LIS T3*} = 0, (23)
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Fig. 2. Determination of the probability of percolation between two neighbouring uniform cells. Relative
positions of the centres of the percolating i-th and (i + 1)-th cells
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and from [1],

lim {T%, T3, Tx} = 0,

c=0

lim {T* T*

cX): ey?
c—>1

(24)

Tz} = 0.
So the temperatures T.}* = oo can be interpreted in the case of concentrations ¢ = 1/8.
In a superconducting tape elongated in direction z and flattened in the plane xy the
inequalities
7‘* < 7‘*

cx = “*¢cz»

=T, T5<T3*, Ti<T (25)

can be realized. Consequently the uniform cell turns to the microscopic superconducting
state in direction z first of all.

The macroscopic superconducting state can be set in at a temperature T < T **
= min {T%, T*).

The minimum value of the temperatures T ¥*, T.** depends on the deformation of the
superconducting tape.

In the case of k < E* the temperature T** is the lower one, thus T** = T** and,
depending on the concentration, we get

cz >

1
c>§:Tc**>T*

2 — 23
T** > T* if EKE)?: < —_ 5
C -
2 — 2c1
8 I <1 it ERE? > 222
1 — 213

In the case of k > E* the temperature T;** is the lower one, thus T** = T** and,
depending on the concentration, we get

cz >

1
c>§:Tc**>T*

2 __2 1/3

T* > T* if k<o ¢

1 1 — 2c8
¢ —_2

2 _}2 1/3

B lpsrcx if k> 22

1— 23

Supposing in three dimensions the initial quasi-spherical symmetry for the bulk material
consisting of N* uniform cells the number of the percolation chains can be N? and each
chain formed from N uniform cells. As we mentioned previously the probability of the
formation of a percolation chain in the K-th case is P} ~ !, thus the number of the percolation
chains is

N, = N2P¥-t, (26)
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Obviously the number of percolation chains does not decrease below N, because that means
the lack of the percolation chains, therefore the critical temperature T%* in the K-th case
can be given by

N (TX*) = N*Py"(T4*) = N = n'?, 27

where n is the average number of filaments running through the cross-section of the
conductor. From this the critical temperatures can be determined using the probabilities (14),

Po(Ti¥) = NVO=1) _ puiaa=nay (28)

At given values of E, k, ¢, and I, with decreasing temperatures the in-situ granular
superconductor passes through the different possible percolation cases mentioned above.

In the case of T¥ > T%* first the uniform cells go into the superconducting state and
afterwards the whole composite becomes a superconductor by the further decrease of.
temperature.

In the case of T.¥ < Tj* the bulk composite and the cells will be superconducting at
the same time when the temperature of the cell superconductivity has been reached.

5. Conclusions

On the basis of our uniform cell model the probabilities of the formation of percolation
chains can be given in two and three dimensions in an elongated and/or flattened in-situ
granular superconducting composite. The critical temperatures of the macroscopic super-
conducting state can be derived from these probabilities.

With decreasing temperature the different cases of the macroscopic superconductivity
are realized and evidently the different macroscopic superconducting states have different
superconducting parameters, namely critical magnetic fields and critical currents, too.

The diversities of the transition curves of granular superconductors can be interpreted
easily taking into account the diversities of the deformation parameters E, k, the
concentration ¢, and measurements of the superconducting grains.

3

PK( N

Fig. 3. Determination of the macroscopic critical tem-

— L_I perature T** from the temperature dependence of the

0 Tc Tc  percolation probability Pg(n). T* is the microscopic
T —> c(ritical temperature
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At the parameters given above, in three dimensions the temperature dependence of the
probabilities can be calculated and T,** will be pointed out by Pg(n) as is shown in Fig.
3. The critical temperature of the macroscopic superconductivity is

T** =0 if Pg(n)> P(T =0),
T** =Tx if Pg(n) = P(T3),

0=T*=T: if P(T=0) = Pgm = P(TI),

where T.% is the critical temperature of the microscopic superconductivity.
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