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A new b iomathemat ica l  descript ion is given for the shape of the bi rch leaf roller 's (Deporaus 
betulae) incisions. These incisions are invest igated for different leaves. The theoretical  pa t te rns  
agree well with  the real ones, and  the presented mathemat ica l  expressions describe well the shape 
of the real incisions. 

1. Introduction. The birch leaf roller (Deporaus betulae) rolls a regular, 
conical, well closed, slender leaf cigar for its offspring. This beetle gnaws partly 
through the midrib of the leaf to wilt the lower leaf part, and cuts two special 
S-shaped incisions into the leaf blade to make the twist easier. Among the 
Rhynchitinaes the birch leaf roller cuts the most complicated incisions and this 
beetle rolls the most regular, closed leaf cone from the leaf. The ethology of the 
D. betulae's care of offspring and the techniques of its leaf twist are well known 
(see literature). 

Deporaus betulae rolls its leaf cone from birch leaves (Betula) and, rarely, 
from other leaves (Alnus, Corylus, Carpinus). It can be observed that the birch 
leaf roller always cuts the same shaped incisions into the leaf lamina for 
different leaf kinds and leaf sizes. Only the starting point and the size of the 
incisions are varied. The beetle walks round and maps the leaf before it begins 
to cut the incisions. After this walk it chooses the starting point and the size of 
the incisions according to the shape and size of the leaf (Daanje, 1964; 
Rossko.then, 1964; Lengerken, 1954; Buck, 1952). The beetle starts to cut the 
first incision on the leaf border far from the petiole on the larger leaves and near 
the petiole on the smaller leaves, so that rolled leaf mass nearing an optimum 
value is within the leaf cone. This optimal twisted leaf mass is suitable for the 
nutrition of the grubs and for the muscular power of the beetle. 

In Fig. 1 the incisions of the birch !eafroller can be seen for different leaf sizes 
and for two kinds of leaf (birch and alder) (Daanje, 1964; Rosskothen, 1964; 
Buck, 1952). For leaves of different sizes the incisions are represented on the 
largest leaf after proportional enlargement of the smaller leaves. The incisions 
near the petiole and distant from it are characteristic of the smaller and the 
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larger leaves respectively. From Fig. 1 the following important conclusion can 
be drawn: the shape of the birch leaf roller's incisions is independent of the leaf 
size and the leaf shape. The incisions on other kinds of leaf (Corylus, Carpinus) 
also support this conclusion (Daanje, 1964; Rosskothen, 1964; Buck, 1952). 

incisions 1 incisions 2 incisi~I incisions 2 

! *"J~ 

b 

Figure 1. The incisions 1 and 2 of the birch leaf roller (Daanje, 1964; Rosskothen, 
1964; Buck, 1952) for different leaves: (a) birch (Betula); (b) alder (Alnus). The 
differently coded lines represent the curves for leaves of different sizes. The incisions 
near the petiole and distant from it are characteristic of the smaller and the larger 

leaves respectively. 

2. Previous Descriptions and Explanations for the Shape of the Birch Leaf 
Roller's Incisions. The first mathematical description for the shape of the D. 
betulae's incisions was given by Heis and Debey (1846). In his opinion the first 
incision is the evolute of the leaf border (HeW evolute), that is to say, the leaf 
edge is the involute of the first pattern (Heis and Debey, 1846; Debey, 1846) 

Prell improved the Heis theory; he determined an imaginary curve (Prell's 
evolute), and he identified the second incision with the involute of this evolute 
(Prell's involute) (Prell, 1924; 1925). 

The evolute-involute theory of Heis and Prell is widely quoted, but it is only 
a mathematical description; furthermore Heis' evolute and Prell's involute do 
not agree well with the shape of the birch leaf roller's incisions. The theories of 
Heis and Prell cannot explain the biophysical, bionical reason for the shape of 
the patterns. 

Rosskothen (1949) gave another explanation for the patterns of the D. 
betulae. He constituted the incisions from several small arcs and he derived 
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every single arc from the roll techniques and from the structure of the leaf. In 
the opinion of Rosskothen the beetle works out experimentally the optimal 
shape of the incisions through repeated cutting and rolling of some leaves. He 
thought any mathematical description of the shape of the patterns impossible 
and he assigned some intellectual capacity to the beetle. Rosskothen (1949; 
1964) denied that the optimal shape of the patterns is genetically fixed. This 
theory nowadays is a worn out conception. 

Buck (1952) presented a new theory; he derived the shape of the incisions 
from the anatomy of the beetle and from the structure of the leaf. In his opinion 
the main arc of the patterns rises from the fact that the hindmost legs of the 
beetle are longer than its forefeet, so during the cutting the beetle sidles along an 
arc. Buck explained the smaller ares of the incisions on the basis of the leaf 
structure and of the cone construction. 

Daanje (1964) wrote the most detailed general work on the ethology and on 
the roll techniques of the birch leaf roller. He put his finger on the mistakes in 
the theories of Rosskothen and Buck, and showed that these explanations 
cannot be maintained. Daanje reverted to the evolute-involute theory of Heis 
and Prell. He gave a qualitative explanation on the grounds of the shape of the 
D. betulae's patterns. He used the theories of Heis and Prell for the 
mathematical description of the shape of the incisions, in spite of the fact that 
the real incisions differ significantly from Heis' evolute and from Prell's 
involute. 

Another widely quoted general view is that the optimal shape of the incisions 
is determined by the principle of optimal cost: the work needed to roll the leaf 
halves is as minimal as possible (Lengerken, 1954; Hoffmann, 1958; Schilsky, 
1903; Lohse, 1981; Reitter, 1916; Rozen, 1962; Scherf, 1964). This view is 
refuted by the present author (1988). 

Summing up, the following can be concluded: Daanje could explain 
qualitatively the shape of the birch leaf roller's incisions quite well; the theories 
of Rosskothen and Buck are refuted by Daanje; the widely quoted theory of 
Heis and Prell--the only mathematical theory---cannot fully describe the 
shape of the real patterns. A correct mathematical expression for the shape of 
the incisions does not exist. 

In this work new biomathematical explanations and exact mathematical 
expressions are presented for the D. betulae's patterns. Using these expressions, 
the shape of the incisions is investigated and compared for different kinds of 
leaf. 

3. Mathematical Expression for the Shape of the Birch Leaf Roller's First 
Incision. Figure 2 shows a leaf cut by the birch leaf roller. After the cutting the 
beetle begins to roll leaf half I into a leaf cone and incision I helps in this cone 
construction. 
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Figure 2. A leaf cut by the D. betulae. The points A, P, Q, B 1 , P0, B2, P1 are the root 
of the petiole, the peak of the rolled leaf cone, the tip of the leaf, the root on the 
midrib and on the leaf edge of the first and of the second incision respectively. The 

arc CB 2 of incision 2 constitutes the suspension of the completed leaf cone. 

Deporaus betulae first makes a small cone from the leaf lamina on the leaf 
border and then rolls the whole of leaf half 1 around this core; a regular, slender 
cone is formed as in Fig. 3. A suitable microclimate can be insured for the grubs 
if the peak of the cone is well closed: there may not be any gap on this peak. 
Figure 4b shows the situation of the leaf cone near its last stages and Fig. 4a 
shows the situation of leaf half 1 when it is uncoiled. The external layer of the 
leaf cone allows the internal core to rise out easily and to close the peak of the 
leaf cone only if leaf half 1 forms a slanting cone section in the uncoiled stage of 
Fig. 4a. Therefore D. betulae cuts incision 1 so that after the twist of leaf half 1 
the external leaf layer constitutes a slanting cone section. This can be realized if 
the uncoiled leaf half 1 forms a slanting cone section. 

On the basis of the above theoretical incision 1 is the curve of a slanting cone 
section laid out in the plane. The expression of this curve can be determined in 
the following way. The leaf cone is placed in the system of coordinates of Fig. 5. 
The position vector of the points of the cone is: 

p = ( p i , p 2 , p 3 ) = ( z t a n ~ c o s c ~ , z t a n ~ s i n d p , - z ) ,  z>~O. (1) 

We intersect the cone with a plane going through the point: 
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Figure 3. The birch leaf roller twists a regular, closed, slender leaf cone from leaf 
half 1. The back side of the leaf can be seen. 

,'/ ," ,,"/" 

a b 

Figure 4. (a) Such a slanting cone section can uncoil from leaf half 1 rolled by the 
birch leaf roller. (b) The slanting cone section in (a) assures that the internal core of 
the leaf cone can rise out easily from the external layers during the leaf twist, and this 

internal core can form the closed peak of the leaf cone. 

Po = (x0, Yo, Zo)= (sin ~, 0, - c o s  ~)h. 

The normal vector of the plane is: 

(2) 

n =  ( - s i n  fl cos y, sin fl sin y, cos fl). (3) 

The coordinates of the plane are R = (R1, R z, R 3); the equation of the plane is: 
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Figure 5. For  the calculation of the curve of a slanting cone section laid out in the 
plane: (a) a cone with half aperture angle ~; (b) a plane with normal vector n; (c) a 
slanting section of the cone of (a) by the plane of (b); (d) the curve of the slanting 

cone section of (c) laid out in the plane. 

( R - P o ) n = 0 .  (4) 

The coordinates of the points of the curve which is determined by the section of 
the plane and cone are: 

Ra =p~ = z  tan ~ cos q~, 

R 2  = P 2  = g tan ~ s in  $, 

R 3 = P 3  = ~ Z .  

We can write on the basis of Fig. 5: 

= 6/sin 0c, 

We obtain from equations (2)-(6): 

(5) 

p = Z/COS r (6) 
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1 + tan ~ tan/3 cos 7 
p=h 1 +tan ~ tan fl cos(7 +fi/sin ~)" (7) 

We apply the above to a real leaf (see Fig. 6): h can be determined as a function 

of the coordinates of Po. The line OPo is a tangent of the leaf border, so we can 
write by Fig. 6: 

OA - y ( x ~  x o, y'(Xo)=(d-~Y~ (8) 
y'(Xo) \ax/,,=xo' 

leaf half 1 

A 

h 

:%81 Q x 
II 

Figure 6. For the theoretical calculation of incision 1 of the birch leaf roller. 

where x 0 is the distance between point A and the perpendicular projection of 
point Po on the midrib, and y(x) is the function of the leaf edge. It is clear that: 

h =  [y2 + (OA + Xo)2] ~/2. (9) 

The position of the point Po on the leaf edge determines the value of the angle g. 
Using equations (7)-(9), we get from the equation p = h: 

tan g=  arctan y'(Xo){4n 2 -  [arctan y'(Xo)] 2} -i/2 (10) 

Using equations (7)-(10) we obtain the following expression for the theoretical 
incision 1 of the birch leaf roller: 

p[y(Xo), y'(Xo), /3, y, ~] =Y(Xo)[1 + 1/y'a(Xo)] 1/2 

tan flarctan y'(Xo)COS 7 1+  
{4~ 2 -- [arctan y'(Xo) ] 2} 1/2 

X 

14 
tan fl arctan y'(Xo)COS[7 + 2nf/arctan y'(Xo)]" 

{ 4 ~  2 - -  [arctan y'(Xo)] 2} 1/2 

(11) 
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I have plotted the curve p[y(Xo), y'(Xo), fl, 7, 6] as a function of the leaf shape, 
the angles fl, ~ and the position of Po on the leaf border. I sought for those 
theoretical curves which are the most similar to incision 1 of the birch leaf 
roller. These curves can be seen in Figs 7 and 8 for birch and alder leaves 
respectively. The position of Po on the leaf edge is fixed and the angles a, fl are: 
a =  13 ~ f l=45 ~ for the birch leaf, and ~ = 9  ~ f l=45 ~ for the alder leaf. It can be 
seen that the theoretical incision 1 is very similar to the real one for 
60 ~ <~ ~ < 90 ~ on both of the investigated kinds of leaf (see Figs 1, 7 and 8). Thus 
expression (11) is suitable for the description of incision 1 of the D. betulae. 

4. Mathematical Expression for the Shape of the Birch Leaf Roller's Second 
Incision. After the rolling of leaf half 1 into a leaf cone the beetle twists leaf 
half 2 around this cone. Incision 2 helps this rolling and prevents the uncoiling 
of the twisted leaf. 

The flexibility of the leaf lamina plays a primary role in the physics of the leaf 
twist, therefore consider the torque needed to roll a leaf blade around a cone 
with half aperture angle a. The thickness of the leaf lamina is a; the width of the 
rolled leaf blade along the generatrix of the cone is b. The nearer edge of the 
rolled leaf lamina is at distance x along the generatrix from the peak of the cone. 
If E is the Young's modulus of the leaf blade, the torque needed to roll the leaf 
cone is: 

E o  3 
M - - -  logo(1 + b/x). (12) 

12tga 

Cutting the midrib of the leaf causes the leaf tissue to wilt, that is, its cells lose 
their normal turgor. This is a crucial in the strategy of the brich leaf roller, 
because the mechanical properties of the flaccid, wilted leaf lamina are more 
advantageous for the leaf twist than those of the normal, turgid lamina. The 
Young's modulus E of a wilted leaf blade is much smaller than that of a turgid 
blade, so on the basis of equation (12) the torque M needed to flex a flaccid 
lamina is much smaller than that of a turgid one. The concrete value of Young's 
modulus E of a flaccid leaf blade is of no further interest. 
Furthermore, it can be observed that the wilted leaf blade cut by the D. betulae 
is a little twisted in on itself, making the leaf twist easier. It is important  for the 
suitable microclimate of the grubs that the leaf tissue of the leaf cigar does not 
dry totally after the leaf cone is constructed, but the tissue does not regain its 
normal turgor after the cone construction. The upper part of the rolled leaf 
remains sound and turgid; and a smaller flow of the tissue fluid is possible 
through the gnawed midrib. 

We can see from equation (12) that the D. betulae must cut incision 2 in such 
a way that during the roll the distance PB 2 is not too small, because the torque 
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/,3 t . 5 o =  = 
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Figure 7. The theoretically calculated curves of the D. betulae's incision 1 for birch 
( Betula) leaf. 

needed to roll leaf half 2 would then be very great, or too large, because then 
little leaf mass would roll into the leaf cone. The beetle must choose a small 
distance PBz, then cut incision 2 so that the edge of the leaf moves quickly from 
the point P during the twist, so x increases rapidly, M decreases rapidly, and 
the part of leaf half 2 near the point P can be rolled. 

When the beetle is ready with the twist of the leaf halves, it fastens the leaf 
layers of the cone together with its proboscis; thus the leaf cone cannot uncoil. 
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0( =9* /3 =45 ~ 

~" = 0 o ~," =90 ~ 

~" = 30" ~" =120 ~ 
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Figure 8. The theoretically calculated curves of the D. betulae's incision 
(Alnus) leaf. 

for alder 

The last leaf layer must be tongue-shaped so that it can be fastened easily by the 
beetle, i.e., the torque M must be small. We see from equation (12) that M is 
small if b/x is small. Consequently, the last tongue-shaped layer must be 
narrow and its edges must be distant from the point P. Therefore the D. betulae 
cuts incision 2 in the leaf lamina so that the last leaf layer is a relatively narrow, 
long tongue far from the peak point of the leaf cone. 
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Since the leaf cone nourishes the grubs, it is very important to have enough 
leaf mass in it; the birch leaf roller must roll as much leaf mass as possible into 
the leaf cigar. 

Consider the angles between the borders of the lower part of leaf half 2 rolled 
and the generatrix of the cone (the angles f,  and fir in Fig. 9). If these angles 
differ very much from each other during the twist, then the last leaf layer will be 
suddenly very wide or narrow; either one would contravene the requirement of 
the narrow, long, tongue-shaped last leaf layer far from the peak of the leaf 
cone. Therefore incision 2 must be cut in such a way that the angles between the 
edges of the lower part of leaf half 2 rolled and the generatrix are equal. 

r o--P'B= R o = P-Q 

incision 2 X,/ / 

:~c R ~ r a t r i  x 

Q leaf half 2 

Figure 9. For the theoretical calculation of incision 2 of the D. betulae. 

Referring to Fig. 9, assign polar coordinates with origin at P, and angles 
measured from the midrib AQ of the leaf. The curve of the border R(tk) is given. 
We want to determine the curve r(tp) (incision 2), starting at the point B 2, for 
which f, = fir = 6 for every 4). We can write, on the basis of Fig. 9: 

d4, (13) tan 6, = r dr ' 

tan fR = - R  d~b (14) 
dR '  

We get from these: 

r(~) R(~) 
r'(~b) R'(~b) 

6,=6R--6. (15) 

or  = - -  R - - ~  
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From equation (16) we obtain r = c/R, but r = r o for R = R o, therefore c = Ror o . 
So the theoretical curve of incision 2 according to the above twist method is the 
following: 

R~176 PQ" PB2 (17) 
r(~b) = R(~b)- R(r 

In Figs 10 and 11 the curve r(r is plotted as a function of R o, r 0 for the birch 
(Betula) and alder (Alnus) leaf respectively. The small perforation of the leaf 
border is not important  in the twist of the leaf, because the teeth of the leaf edge 
are negligible compared with the whole leaf lamina; the perforation of the leaf 
edge can have little influence on the torque during the twist. 

In Fig. 10 it can be seen that the marked theoretical curves are very similar to 
the curve Px C of incision 2 of the D. betulae for the birch leaf (see Fig. 2); but in 
Fig. 11 we see that for the alder leaf the theoretical curves differ significantly 
from the real incision 2. There is a little difference between the marked 
theoretical curves of Fig. 10 and the real incision 2. The marked theoretical 
curves have not the arc CB 2 (see Fig. 2). The beetle uses the arc CB z because 
thus a small distanceBx B 2 can be formed between the root point of the incisions 
on the midrib. This distance is very important in forming a strong suspension of 
the rolled leaf cone, so the completed leaf funnel cannot fall down from the 
midrib. In reality the peak point P of the leaf cone coincides with point B 2 of 
incision 2, and point C can be considered the real root point of incision 2 in 
respect of the rolling of leaf half 2. 

Since the mathematical description whose result is equation (17) took only 
the biophysics of the rolling into consideration during the calculations, 
equation (17) can describe only the double-S shaped arc P~ C of incision 2. In 
this respect the equation (17) can be viewed as correct. 

5. Conclusions. The shape of the D. betulae's incisions is independent of the 
leaf size and the leaf shape. Previously, an exact biomathematical description of 
these patterns which could explain the biophysical, bionical reason of the shape 
of the incisions did not exist. In this work two mathematical expressions are 
given for the description of the patterns. 

Equation (11) for incision 1 does not depend on the whole leaf shape, it 
depends only on parameters Y(Xo) and y'(Xo) among the parameters of the leaf 
shape. This is only a weak dependence on the kind of leaf, so the theoretical 
incision 1 is almost independent of the leaf shape. For some values of the 
parameters in equation (11) the theoretical incision 1 agrees well with 
incision 1 of the birch leaf roller. 

Equation (17) for incision 2 depends on the leaf shape. For some values of the 
parameters in equation (17) and for the shape of birch (Betula) leaf the 
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Figure 10. The theoretically calculated curves of the birch leaf roller's incision 2 for 
birch (Betula) leaf. The curves marked with [] agree well with the real incision 2. 

theoretical incision 2 agrees well with the real one. For other leaf shapes 
equation (17) issues such theoretical curves which differ from the real 
incision 2. The reason for this result is that only one shape of the incisions was 
fixed genetically during the evolution in the species D. betulae; namely, that 
shape which belongs to the most frequently rolled leaf--the birch leaf. 

In sum, the presented equations describe well the incisions of the birch leaf 
roller; and the biophysical, bionical reasons of these equations can be justified 
too. The values of parameters of the presented equations, in which the 
theoretical patterns agree with the real incisions, may be determined by the 
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Figure 11. The theoretically calculated curves of the birch leaf roller's incision 2 for 
alder (Alnus). 

optimal, rolled leaf mass which is suitable for the nutrition of the grubs and for 
the muscular power of the birch leaf roller. 

Thanks are due to Prof. L~szl6 M6cz/lr, Prof. Tibor Gfinti, Dr Attila 
Podluss~ny and Dr Ferenc Greguss for their help, support and advice. 
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