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The biological literature has a widecpread view that the mathematical aspect of the leaf cone con-
struction of the birch leaf roller is that the S-shaped, serpentine incisions cut by the beetle on the leaf
blade are the ideal geometric shape to minimize the work needed to roll the leaf halves. The generally
accepted view, that the leaf cone construction of Deporaus betulae is determined by the principle of
optimal cost, is refuted in this work. A new biomathematical description and a biomechanical explana-
tion are presented for the shape of the incisions, on the basis of which their asymmetry can be explain-
ed, too.
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Introduction
The ethology of the birch leaf roller

The Rhynchitinae provide peculiarly for their descendant, they twist leaf cigars as
cradles for offspring to protect and feed the grubs. The most interesting and most
studied species of the Rhynchitinae is the birch leaf roller (Deporaus betulae).

The birch leaf roller rolls a regular, conical, well-closed, slender lear cigar. This beetle
gnaws partly through the midrib of the leaf to wilt the lower leaf part, and cuts two
special S-shaped incisions into the leaf blade to make the twist easier. Among the
Rhynchitinae, Deporaus betulae cuts the most complicated patterns and it rolls the
most regular, closed leaf cones from the leaves. In spring the 3-5 mm long female beetle
deposits its eggs into these leaf cigars.

Deporaus betulae rolls its leaf cone from birch leaves (Betula) and, rarely, from other
leaves (Alnus, Corylus, Carpinus). It can be observed that the beetle always cuts the same
shaped patterns into the Jeaf lamina for different leaf kinds and leaf sizes. Only the start-
ing point and the size of the incisions are varied. The beetle walks round and maps the
leaf before it begins to cut the incisions. After this walk it chooses the starting point and
size of the patterns according to the shape and size of the leaf [1].The beetle starts to cut
the first incision on the leaf border far from the petiole on the larger leaves and near the
petiole on the smaller leaves, so that the rolled leaf mass nearing an optimum value is
within the leaf cone. This optimal twisted leaf mass is suitable for the nutrition of the
grubs and for the muscular power of the beetle.

This paper won first prize in the competition for young biophysicists conducted by Jend Ernst
Foundation. It was written on the basis of the lecture given by the author at the 15th conference of
the Hungarian Biophysical Society (Szeged, July 3—5, 1989).
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The birch leaf roller twists its cigar in the following way [1]: on the upper part of the
leaf, near the peduncle, the beetle cuts into the border of the leaf sheet, and makes the
first S-shaped incision towards the midrib. It then chews the midrib, and climbs over to
the other leaf half. Then it cuts the second S-shaped incision from the midrib to the
leaf edge but this is flatter than the first one. Soon the leaf begins to droop, then the
female starts to roll it. It climbs over to the back side of the leaf and rolls the first leaf
half with its feet into a slender cone. Then it twists the second leaf half in a similar way
around the rolled first leaf half. Thus arises a massive leaf cone from the leaf.

The beetle climbs into this cone and cuts into the skin tissue of the leaf at some points.
It deposits its eggs in these cuts then crawls out of the leaf funnel, rolls the under edge of
the cone to a small cornet, and so closes its eggs into this green package. The task takes
about 30—60 minutes. When a female has finished a leaf funnel, it starts another one.

In a few months the wind or the rain tears the browned leaf funnels from the branches.
The grubs gnaw through the walls of the leaf cigars and dig into the earth, where they be-
come chrysalises. In Fig. 1 we can see the main stages of the Deporaus betulaes leaf twist
[1]. Only the female beetle is able to roll leaf cigars, and if it is interrupted in its activity,
the work does not suffer, it can continue the twist where it stopped.

VAN

Fig. 1. Deporaus betulae’s leaf twist. (The front of the birch leaf.) In stages 1, 2 the beetle cuts the
incisions, in 3, 4 it rolls the leaf cone from the first leaf half. In stages 1—4 the beetle works on the
back side of the leaf, in 5—9 it twists the second leaf half around the leaf cone, it then works on the
front of the leaf. In stages 10, 11 the beetle closes the leaf funnel below. Symbol @ shows the posi-

tion of the beetle during the twist on the front side and symbol O shows its position on the back [1]

In Fig. 2 the incisions of the birch leaf roller can be seen for different leaf sizes and for
two kinds of leaf (birch and alider) [*]. For leaves of different sizes the patterns are repre-
sented on the largest leaf after proportional enlargement of the smaller leaves. The
incisions near the petiole and distant from it are characteristic of the smaller and larger
leaves, respectively. The shape of the birch leaf roller’s patterns is independent of leaf
size and leaf shape.
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Fig. 2. First and second incisions of birch leaf roller for different leaves [1] (a) birch (Betula), (b)

alder (Alnus). The differently coded lines represent the curves for leaves of different sizes. The

incisions near the petiole and distant from it are characteristic of the smaller and the larger leaves,
respectively

Previous descriptions of the birch leaf roller’s pattefns

The first mathematical description for the shape of Deporaus betulae’ s incisions was
given by Heis and Debey [2, 3].In their opinion the first incision is the evolute of the leaf
border ( Heis's evolute). Heis’s theory was improved by Prell, who determined an imag-
inary curve, and he identified the second incision with the involute of this curve (Prell’s
involute) [4].

The evolute-involute theory of Heis and of Prell is only a mathematical description,
and Heis's evolute and Prell’s involute do not agree well with the shape of the birch leaf
roller’s patterns. The theory of Heis and of Prell cannot explain the biophysical nor the
bionic reason for the shape of the patterns.

Another theory was presented by Buck [5], he derived the shape of the incisions from
the anatomy of the beetle and from the structure of the leaf. In his opinion the main arc
of the patterns rises from the fact that the hindmost legs of the beetle are longer than its
forefeet, so during the cutting the beetle sidles along an arc. Buck explained the smaller
arcs of the incisions on the basis of the leaf structure and of the cone construction.

Rosskothen gave a new explanation for the patterns of Deporaus betulae [6]. He
constituted the incisions from several small arcs and he derived every single arc from the
roll techniques and from the structure of the leaf. In Rosskothen’s opinion the beetle
works out experimentally the optimal shape of the patterns through repeated cutting
and rolling of some leaves. He assigned some intellectual capacity to the beetle, and
he denied that the optimal shape of the patterns is genetically fixed. Nowadays this
theory is a worn out conception.
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Daanje wrote the most detailed general work on the ethology and on the roll tech-
niques of the birch leaf roller [1]. He put his finger on the mistakes in the theories of
Rosskothen and of Buck, and showed that these explanations are unmaintainable.
He gave a qualitative explanation on the grounds of the shape of the Deporaus.
betulae’s patterns. He used the theories of Heis and Prell and their mathematical de-
scription for the shape of the incisions, in spite of the fact that the real patterns differ
significantly from Heis’s evolute and from Prell’s involute.

The most widespread general view in the biological literature is that the mathemat-
ical aspect of the cone construction of the birch leaf roller is that the S-shaped, serpen-
tine patterns are the ideal geometric shape to minimize the work needed to roll the
leaf halves. In other words, the leaf cone construction of Deporaus betulae’ is determined
by the principle of optimal cost [7].

First, in this work this general view is refuted, then a new biomathematical descrip-
tion and a biomechanical explanation are then presented for the shape of Deporaus
betulae’s incisions. Using this new theory the following question can be answered: why
are the birch leaf roller’s patterns asymmetrical? The problem of the asymmetry of the
incisions cannot be solved on the basis of the principle of optimal cost.

Calculation of the work needed to roll a leaf half

Figure 3 shows a leaf cut by the birch leaf roller. After the cutting the beetle begins
to roll leaf half 1 into a leaf cone and incision 1 helps in this cone construction. After the
rolling of leaf half 1, it twists leaf half 2 round this cone. Incision 2 helps this rolling
and prevents the uncoiling of the twisted leaf. In this section, | calculate the work need-
ed to roll a leaf half.

Consider the twist of a sheet with Young’s modulus £ and thickness a around a cone
with half aperture angle a (see Fig. 4). At the examined point the neutral surface is at
distance L from the surface of the cone, and the local radius of curvature is

R =Bx, B = tana (1)

If the functions of the borders of the rolled sheet are r (¢)and R (@) from the peak

point of the cone (the angle ¢ is measured from the midrib), then the force and torque
are (see Fig. 5).

R
Fala—2L)
=l = dx (2)
2(Bx+L)
r
R
3 3
El(a—L)°+ L
M=I[a~——— ]dx (3)
3(Bx + L)

r
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leaf half 1 leaf half 2

g PQ. B.. P, are the root of the petiole,

ot “on the midrib and on the leaf edge of

Fig. 3. Leaf cut by Deporaus betulae. Points A, P, Q, B
the peak of the rolled leaf cone, the tip of the leaf, the r

the first and of the second incision, respectively. Arc CB., of incision 2 constitutes the suspension
of the completed leaf Cone

Fig. 4. Twist of a sheet with thickness a and b around a cone with half aperture angle .«
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Fig. 5. Elementary pijece of a leaf sheet twisted into the leaf cone. The local radius of curvature is

x tang, the nearer edge of the sheet element is at distance x from the peak of the cone, the thick-

ness of the sheet is a, the width of the sheet element is dx. The neutral surface is at distance L(x)

from the surface of the cone. The elementary piece of the sheet with thickness dz is at distance
z from the neutral surface.

The neutral surface forces F are equal to zero, i.e. F = 0. The neutral surface is deter-
mined by the minimization of M. We thus have the following variational problem.We
look for the minimum of M under the additional condition F = 0. In this case the mini-
mization must be done using Lagrange’s function

£ [la-0)3 + .3 | Eala-2t)
3(Bx +L) 2B+ L)

(4)

where N\ is Lagrange’s multiplicator. Function L(x) is sought. | use for (4) the Euler—
Lagrange equation

d oL oL dL
= - =0, Lox)= — (5)
dx 0L'(x) oL(x) dx
Thus we get
DL aE
—- (-Bxa +2BxL —a2/3 + 12 + BxA + 7\a/2> -0 (6)
L (gx+1)2
From here

2 2 2 1/2
L(x)=|B“x“ + Bx(a—\) +a“/3 — a2 — Bx (7)
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We can determine Lagrange’s multiplicator Afrom the equation F =0 using (2)
R R
2| Bx +L(x) Bx + L(x)

r r

After performing the integrations we obtain the following equation
1/2
F=B(R—r) + [B%2 + Bria—\) +a2/3 —aN2]
1/2
- [32R2 + BRla—\) +a%/3 — am]
1/2
N o 28%R+Bla—)) + 28 [B2R%+BRI—N) +a2/3-aN2)
— — log, =0 (9)
1/2
- 282 r+Bla—N) + 28 [ 822 +Br(a—\)+a2/3—-aN2 |
The work needed to roll a leaf half is
*
R
O B a3+ 19«
e f d¢{ dx (10)
3(Bx + L)2
0 r

whgre angle ¢ is measured from the midrib of the leaf, the origin of the system of co-
ordinates is the peak point of the cone. Angle ¢ ¥ is determined by

*
r(6)=R($) (11)

Minimization of the work needed to roll a leaf half

| now minimize the work needed to roll a leaf half under the additional condition
that the leaf surface rolled into the leaf cone is a given constant. This leads to a problem

of variational calculus, which is solved in this section.

I minimize the work W needed to roll a leaf half for a given rolled leaf surface
% *
o

m ¢

r[1 20 do+ 12R2<¢;d¢=[lr2(¢)d¢+t fi2)
0’ o* 0?
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From here the additional condition of the variational problem is
*
¢
27-0) = [ Pig) dg
0

where the surface 2(7—t) is constant. Lagrange’s function is

3,,3
x £ [la-0)3 + 3] x 32

r 3(Bx+L)2

~

where A is a Lagrange’s multiplicator. The Euler—Lagranage equation is

d oL oL dr
— - =0, ri¢p)=——vm
de 3ri¢) ar(g) d¢

| substitute (14) into (15) and obtain

oL ~ | Eax[a? —3aL0 + 3L2(x)]L

=0, fromhere —2rA =
ar 3[Bx+L(x)] 2

| introduce the following notations
hy =822+ gar +a%13, hy=Br+al2,

hy =% (3 Xhy + Ea3 + 3Ea2Br + C:IEaBzrz),

hy=3hy(2\ + Ea) he = 3Eala + 28r) |,
2 2 _n2p
gt iy . 8 sl
2 A
4 4

Lagrange’s multiplicator A can be determined using (17)

(13)

(14)

(15)

(16)

)

X=r

(17)
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2 1/2
T 7
2 4
The other Lagrange’s multiplicator'i is determined from (16)
b [a2 - 2aL(r) +3L2(0)] it
6 [Br 3 L(rﬂ -
I solved (9) for r using Newton’s tangent method, applying the following recursion
r F(f,-) F(r) o (20)
. S ; r)= ——
+1 7 F(r) pr

/

| proceed during the numerical solution in the following way. | determine F by (9)
for one Fo initial value of r using Lagrange’s multiplicator A, which is taken from (17)
and (18). Then | determine the force F after which, with the application of recursion
(20), | determine the next approach root r; and repeat all these until the successive roots

r fall within a determined error boundary. . -
I must still determine Lagrange’s multiplicator A I c:annot express A from (13) be-
cause of the extreme complexity, but A determines r(¢ = 0) =,(0). | choose an

arbitrary r(0), then solving (9) for X\ by substituting r = r(0), R = R(0), then substitut-
ing the so-determined A(0) into (7), determining L[r(0), AN(0)] and substituting it
into (19), | get A. A can be determined from (9) only numericallv ( by Newton’s
tangent method, for example). | must give one )\0 initial value, which can be estimated
in the following way

| Brie-a) + a%;3 - 12

21)
al2 + Br
Using 0<L< a | obtain
Br + 2a/3 Br +a/3
—g———— R A € ——— (22)
Br +a/2 Br +al2

The numerical solution shows that the physically valid sign is the + in (18). In
Fig. 6 some results of the calculations can be seen for birch and alder leaves. |
always obtained approximate arcs for r(¢), the radius of which is r(0). Since the
real patterns are not arcs, the birch leaf roller does not cut its incisions on the basis
of the above variational principle. Therefore the work needed to roll the leaf and the
principle of optimal cost do not play a primary role in the Deporaus betulae’s |eaf
twist. Furthermore the principle of optimal cost would result in symmetrical incisions
because it must regard both leaf halves, however, the real patterns are asymmetrical. This
contradiction and the reason for the asymmetry can be explained only by a new theory.
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Fig. 6. Theoretically calculated incisions of the birch leaf roller for birch (a) and alder (b) leaves,

if it is supposed that the beetle cuts the patterns so that the work needed to roll the leaf halves

can be minimized under the additional condition that the leaf surface rolled into the leaf funnel
is a given constant

New theory for the description of the birch leaf roller’s incisions

After the cutting of the incisions the birch leaf roller begins to roll leaf half 1 into a
leaf cone. The beetle first makes a small cone from the leaf lamina on the leaf border
and it then rolls the whole of leaf half 1 around this core, a regular, slender cone is
formed. A suitable microclimate can be ensured for the grubs if the peak of the cone
is well closed: the peak must not have any gap. Figure 7(b) shows the situation of the
leaf cone near its last stages, and Fig. 7(a) shows the situation of leaf half 1 when it is
uncoiled. The external layer of the leaf cone allows the internal core to rise out easily
and to close the peak of the leaf cone only if leaf half 1 forms a slanting cone section
in the uncoiled stage of Fig. 7(a). Therefore Deporaus betulae must cut incision 1 so
that after the twist of leaf half 1 the external leaf layer constitutes a slanting cone
section. This can be realized if the uncoiled leaf half 1 forms a slanting cone section.

2 1/2
p(8) =ylxo) 141y (x,)]

tanf arctan y'(xo) cosy
1+

[ 2 12
‘l 472 _ [arctan V'(Xo)] i (23)

tan 8 arctan y'(x,) cos{v + 2né/arctan y'(xo)]

: - A 72
< 4n? —[arctan y'(xo)jz}

X
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Fig. 7. (a) Such a slanting cone section can uncoil from leaf half 1 rolled by the birch leaf roller.

(b) The slanting cone section in (a) ensures that the internal core of the leaf cone can rise out

easily from the external layers during the leaf twist, and this internal core can form the closed
peak of the leaf cone

O.n the basis of these, theoretical incision 1 is the curve of a slanting cone section laid
out in the plane. The mathematical expression of this curve can be determined [8, 9]. (See
Ea. (23).)

In (23), y(x) is the function of the leaf border with Cartesian co-ordinates when axis
x is parallel to the line AQ of the midrib and the origin of the system of co-ordinates is
the root point A of the petiole. y*(x) = dy/dx, and X is the distance between point A
and the perpendicular projection of point Po on the midrib. Angles 3 and y characterize
the slanting cone section mentioned above.

| have plotted curve p(§) as a function of the parameters y(xo), y' (x_), B and 7.
| sought those theoretical curves which are the most similar to incision 1 of the birch
leaf roller. These curves can be seen in Fig. 8(a) and 8(b) for birch and alder leaves,
respectively. It can be seen that theoretical incision 1 is very similar to the real one on
both of the investigated kinds of leaf. Thus expression (23) is suitable for the descrip-
tion of incision 1 of Deporaus betulae.

After the rolling of leaf half 1 into a leaf cone the beetle twists leaf half 2 around this
cone. The flexibility of the leaf lamina plays a primary role in the physics of the leaf
twist, therefore consider the torque needed to roll a leaf blade around a cone with half
aperture angle a. The thickness of the leaf lamina is a, the width of the rolled leaf blade
along the generatrix of the cone is b. The nearer edge of the rolled leaf lamina is at dis-
tance x along the generatrix from peak P of the cone. If E is Young’'s modulus of the
leaf blade, the torque needed to roll the leaf cone is (see Fig. 4).

Ea3
M=——In(1+b/x) (24)
12tana
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Fig. 8. These theoretically calculated curves for birch (a) and alder (b) Ieave(s)agree well with
incision 1 of Deporaus betulae. The parameters are (a) a =132 ,B=45" 7= 60
(b) a = ,8=45° v =60°

Cutting the midrib of the leaf causes the leaf tissue to wilt, i.e. its cells lose their
normal turgor. This is a crucial factor in the strategy of the birch leaf roller because the
mechanical properties of the flaccid, wilted leaf lamina are more advantageous for the
leaf twist than those of the normal, turgid lamina. Young’s modulus £ of a wilted leaf
blade is much smaller than that of a turgid blade so on the basis of (24) the torque M/
needed to flex a flaccid lamina is much smaller than that of a turgid one.

Furthermore it can be observed that the wilted leaf blade cutted by Deporaus betulae
is, in itself a little twisted, and this also makes the leaf twist easier. It is important for
the suitable microclimate of the grubs that the leaf tissue of the leaf cigar does not dry
fully after the leaf cone is constructed, but the tissue should not regain its normal turgor
after the cone construction. The upper part of the rolled leaf remains sound and turgid,
and a smaller flow of tissue fluid is possible through the gnawed midrib.

We can see from (24) that Deporaus betulae must cut incision 2 in such a way that
during the roll, distance P82 is not too small, because the torque needed to roll leaf half
2 would then be very great, or too large, because then little leaf mass would roll into the
leaf cone. The beetle must choose a small distance PB, then it cuts incision 2 so that the
edge of the leaf moves away quickly from point P during the twist, so x increases rapidly,
M decreases rapidly, and that part of leaf half 2 near point P can be rolled.

When the beetle is ready with the twist of the leaf halves, it fastens the leaf layers of
cone together with its proboscis, thus the leaf cone cannot uncoil. The last leaf layer must
be tongue-shaped so that it can be fastened easily by the beetle, i.e. torque M must be
small. We see from (24) that M is small if b/x is small. Consequently the last, tongue-
shaped layer must be narrow and its edges must be distant from point P. Therefore
Deporaus betulae cuts incision 2 in the leaf lamina so that the last leaf layer is a relatively
narrow, long tongue far from the peak point P of the leaf cone.

Since the leaf cone nourishes the grubs, it is very important to have enough leaf mass
in it, the beetle must roll as much leaf mass as possible into the leaf cigar.
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Consider the angles between the borders of the lower part of leaf half 2 rolled and
the generatrix of the cone. If these angles differ very much from each other during
the twist, then the last leaf layer will suddenly be very wide or narrow, either one
would contravene the requirement of the narrow, long, tongue-shaped last leaf layer
far from the peak of the leaf cone. Therefore incision 2 must be cut in such a way
that the angles between the edges of the lower part of leaf half 2 rolled and the gen-
eratrix are equal.

Referring to Fig. 3, assign polar coordinates with origin at P, and angle measured
from the midrib AQ of the leaf, using function R(¢) of the leaf border, the theoret-
ical curve of incision 2 according to the above twist method is [8, 9]:

P_é 'P-—B.Z Roro
r(¢) = = ‘ (25)

In Fig. 9(a) and 9(b), curve r(g) is plotted as a function of e with a given Ro for
birch (a) and alder (b) leaves, respectively. In Fig. 9(a) it can be seen that the marked
theoretical curves are very similar to curve P1C of incision 2 of Deporaus betulae for
the birch leaf, but in Fig. 9(b) we see that for the alder leaf the theoretical curves
differ significantly from the real incision 2.

There is little difference between the marked theoretical curves of Fig. 9(a) and
real incisions 2. The marked theoretical curves do not have the arc CB, (see Fig. 3).
The beetle uses arc CB, because thus a small distance B1B can be formed between
the root point of the incisions on the midrib. This distance Is very important in form-
ing a strong suspension of the rolled leaf cone, so the completed leaf funnel cannot
fall down from the midrib. In reality, peak point P of the leaf cone coincides with
point B, of incision 2, and point C can be considered the real root point of incision
2 in respect of the rolling of leaf half 2. So expression (25) can describe the S-shaped
arc P1C of incision 2.

Al

Fig. 9. Theoretically calculated curves of the birch leaf roller’s incision 2 for birch
(a) and alder (b) leaves. The curves marked O agree well with real incision 2
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Conclusions

The widespread view, that the leaf cone construction of the birch leaf roller is deter-
mined by the principle of optimal cost, is refuted. The asymmetry of the incisions cannot
be explained on the basis of this variational principle.

The shape of Deporaus betulae's patterns is independent of leaf size and leaf shape.
Previously an exact biomathematical description of these patterns which could explain
the biomechanical reason for the shape of the incisions did not exist. In this work a new
theory is presented to describe Deporaus betulae’s patterns.

Theoretical expression (23) tor incision 1 depends oniy on parameters y(xo) and
y*{x ) among the parameters of the leaf shape. This is only a very weak dependence on
the ?(ind of leaf, so theoretical incision 1 is almost independent of leaf shape. For some
values of the parameters in (23) theoretical incision 1 agrees well with incision 1 of the
birch leaf roller.

Theoretical expression (25) for incision 2 depends strongly on leaf shape. For some
values of the parameters in (25) and for the shape of the birch leaf, theoretical incision
2 agrees well with the real one. However for other leaf shapes the theoretical curves
differ from real incisions 2. Obviously only one shape of the incisions was fixed genet-
ically during the evolution in the species Deporaus betulae, namely, that shape which
belongs to the most frequently rolled leaf—the birch leaf.

The presented new mathematical expressions describe well the patterns of the birch
leaf roller, and their biomechanical reasons can be justified too. The values of the para-
meters of those expressions, in which the theoretical patterns agree with the real ones,
may be determined by the optimal, rolled leaf mass which is suitable for the nutrition
of the grubs and for the muscular power of the birch leaf roller.
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